【題目】隨著國內(nèi)疫情形勢好轉(zhuǎn),暫停的中國正在重啟,為了盡快提升經(jīng)濟、吸引顧客,哈西某商場舉辦購物抽獎活動,凡當日購物滿1000元的顧客,可參加抽獎,規(guī)則如下:盒中有大小質(zhì)地均相同5個球,其中2個紅球和3個白球,不放回地依次摸出2個球,若在第一次和第二次均摸到紅球則獲得特等獎,否則獲得紀念獎,則顧客獲得特等獎的概率是_________________.

【答案】

【解析】

設(shè)2個紅球分別為AB,3個白球分別為a,bc,不放回地依次摸出2個球,利用列舉法求出基本事件總數(shù)有10個,第一次和第二次均摸到紅球包含的基本事件只有1個,由此能求出結(jié)果.

解:設(shè)2個紅球分別為A,B3個白球分別為a,b,c,不放回地依次摸出2個球,分別有:ABAa,Ab,Ac,BaBb,Bcab,acbc,共有10種基本事件,其中第一次和第二次均摸到紅球包含的基本事件只有AB

所以顧客獲得特等獎的概率是

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機構(gòu)數(shù)(個)與對應(yīng)年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機構(gòu)個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個數(shù)是( )

①公共圖書館業(yè)機構(gòu)數(shù)與年份的正相關(guān)性較強

②公共圖書館業(yè)機構(gòu)數(shù)平均每年增加13.743個

③可預測 2019 年公共圖書館業(yè)機構(gòu)數(shù)約為3192個

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司訂購了一批樹苗,為了檢測這批樹苗是否合格,從中隨機抽測100株樹苗的高度,經(jīng)數(shù)據(jù)處理得到如圖(1)所示的頻率分布直方圖,其中最高的16株樹苗的高度的莖葉圖如圖(2)所示,以這100株樹苗的高度的頻率估計整批樹苗高度的概率.

1)求這批樹苗的高度高于米的概率,并求圖(1)中,,的值;

2)若從這批樹苗中隨機選取3株,記為高度在的樹苗數(shù)量,求的分布列和數(shù)學期望;

3)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果這批樹苗的高度滿足近似于正態(tài)分布的概率分布,則認為這批樹苗是合格的,將順利被簽收,否則,公司將拒絕簽收.試問:該批樹苗能否被簽收?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們可從這個商標中抽象出一個如圖靠背而坐的兩條優(yōu)美的曲線,下列函數(shù)中大致可“完美”局部表達這對曲線的函數(shù)是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交通安全法有規(guī)定:機動車行經(jīng)人行橫道時,應(yīng)當減速行駛;遇行人正在通過人行橫道,應(yīng)當停車讓行.機動車行經(jīng)沒有交通信號的道路時,遇行人橫過馬路,應(yīng)當避讓.我們將符合這條規(guī)定的稱為“禮讓斑馬線”,不符合這條規(guī)定的稱為“不禮讓斑馬線”.下表是六安市某十字路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員“不禮讓斑馬線”行為的統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

“不禮讓斑馬線”的駕駛員人數(shù)

120

105

100

85

90

1)根據(jù)表中所給的5個月的數(shù)據(jù),可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

2)求“不禮讓斑馬線”的駕駛員人數(shù)關(guān)于月份之間的線性回歸方程;

3)若從4,5月份“不禮讓斑馬線”的駕駛員中分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調(diào)查,求抽取的2人分別來自兩個月份的概率;

參考公式:線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題,其中正確命題的個數(shù)為(

①若樣本數(shù)據(jù),,的方差為2,則數(shù)據(jù),,的方差為4;

②回歸方程為時,變量xy具有負的線性相關(guān)關(guān)系;

③隨機變量X服從正態(tài)分布,,則;

④甲同學所在的某校高三共有5003人,先剔除3人,再按系統(tǒng)抽樣的方法抽取容量為200的一個樣本,則甲被抽到的概率為.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的左、右頂點分別為,上、下頂點分別為,,四邊形的面積為,坐標原點O到直線的距離為.

1)求橢圓C的方程;

2)過橢圓C上一點P作兩條直線,分別與橢圓C相交于異于點P的點AB,若四邊形為平行四邊形,探究四邊形的面積是否為定值.若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)記的導數(shù),若當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年初全球爆發(fā)了新冠肺炎疫情,為了防控疫情,某醫(yī)療科研團隊攻堅克難研發(fā)出一種新型防疫產(chǎn)品,該產(chǎn)品的成本由原料成本及非原料成本組成,每件產(chǎn)品的非原料成本y(元)與生產(chǎn)該產(chǎn)品的數(shù)量x(千件)有關(guān),根據(jù)已經(jīng)生產(chǎn)的統(tǒng)計數(shù)據(jù),繪制了如下的散點圖.

觀察散點圖,兩個變量不具有線性相關(guān)關(guān)系,現(xiàn)考慮用函數(shù)對兩個變量的關(guān)系進行擬合.參考數(shù)據(jù)(其中):

0.41

0.1681

1.492

306

20858.44

173.8

50.39

1)求y關(guān)于x的回歸方程,并求y關(guān)于u的相關(guān)系數(shù)(精確到0.01.

2)該產(chǎn)品采取訂單生產(chǎn)模式(根據(jù)訂單數(shù)量進行生產(chǎn),即產(chǎn)品全部售出).根據(jù)市場調(diào)研數(shù)據(jù),若該產(chǎn)品單價定為80元,則簽訂9千件訂單的概率為0.7,簽訂10千件訂單的概率為0.3;若單價定為70元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產(chǎn)品的原料成本為30元,根據(jù)(1)的結(jié)果,要想獲得更高利潤,產(chǎn)品單價應(yīng)選擇80元還是70元,請說明理由.

參考公式:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為:,,相關(guān)系數(shù).

查看答案和解析>>

同步練習冊答案