等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a2-1)3+2014(a2-1)=sin
2011π
3
,(a2013-1)3+2014(a2013-1)=cos
2011π
6
,則S2014=( 。
A、2014
B、4028
C、0
D、2014
3
考點(diǎn):數(shù)列的求和,等差數(shù)列的前n項(xiàng)和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:將兩個(gè)等式相加,利用立方和公式將得到的等式因式分解,提取公因式得到a2+a2013的值,利用等差數(shù)列的性質(zhì)及數(shù)列的前n項(xiàng)和公式求出n項(xiàng)和.
解答: 解:(a2-1)3+2014(a2-1)=sin
2011π
3
=
3
2
,①
(a2013-1)3+2014(a2013-1)=cos
2011π
6
=-
3
2
,②
①+②得,
(a2-1)3+2014(a2-1)+(a2013-1)3+2014(a2013-1)=0,
即(a2-1+a2013-1)[(a2-1)2-(a2-1)((a2013-1)+(a2013-1)2]+2014(a2-1+a2013-1)=0,
∴a2-1+a2013-1=0,
即a2+a2013=2,
∴S2014=
(a1+a2014)×2014
2
=1007×(a2+a2013)
=1007×2=2014,
故選:A.
點(diǎn)評(píng):本題主要考查等差數(shù)列的前n項(xiàng)和,根據(jù)條件求出a2+a2013=2是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1內(nèi)接于球O,底面ABCD是邊長為2的正方形,E為AA1的中點(diǎn),OA⊥平面BDE,則球O的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a2=2007,a9=a5-12,則其前n項(xiàng)和Sn取最大值時(shí)n等于( 。
A、670
B、671
C、670或671
D、671或672

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,若sinB•cosA<0,則三角形的形狀為( 。
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
2+4i
1-i
(i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)點(diǎn)的坐標(biāo)是( 。
A、(3,3)
B、(-1,3)
C、(3,-1)
D、(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式(m-1)x2+(m-1)x+2>0的解集是R,則m的范圍是( 。
A、(1,9)
B、(-∞,1]∪(9,+∞)
C、[1,9)
D、(-∞,1)∪(9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且H=max{
1
a
,
a2+b2
b
},其中maxA表示數(shù)集A中的最大數(shù).則下列結(jié)論中正確的是( 。
A、H有最大值
2
B、H有最小值
2
2
C、H有最小值
2
D、H有最大值
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1+x2
,證明函數(shù)在[0,1]上是單調(diào)函數(shù),并求這個(gè)函數(shù)在[-1,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位有車牌尾號(hào)為2的汽車A和尾號(hào)為6的汽車B,兩車分屬于兩個(gè)獨(dú)立業(yè)務(wù)部門.對一段時(shí)間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計(jì),在非限行日,A車日出車頻率0.6,B車日出車頻率0.5.該地區(qū)汽車限行規(guī)定如下:
車尾號(hào)0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
現(xiàn)將汽車日出車頻率理解為日出車概率,且A,B兩車出車相互獨(dú)立.
(Ⅰ)求該單位在星期一恰好出車一臺(tái)的概率;
(Ⅱ)設(shè)X表示該單位在星期一與星期二兩天的出車臺(tái)數(shù)之和,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案