精英家教網 > 高中數學 > 題目詳情

已知數列{an}中,a1=8,a4=2,且滿足an+2+an=2an+1.
(1)求數列{an}的通項公式;
(2)設Sn是數列{|an|}的前n項和,求Sn.

(1)-2n+10.(2)Sn

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設各項均為正數的數列的前n項和為Sn,已知,且對一切都成立.
(1)若λ=1,求數列的通項公式;
(2)求λ的值,使數列是等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是公比為的等比數列,且成等差數列.
⑴求的值;
⑵設是以為首項,為公差的等差數列,求的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列{an}的公差d=1,前n項和為Sn.
(1)若1,a1,a3成等比數列,求a1;
(2)若S5>a1a9,求a1的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}的前n項和為Sn,且滿足Sn-Sn-1+2SnSn-1=0(n≥2),a1.
(1)求證:是等差數列;
(2)求an的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

正項數列{an}滿足-(2n-1)an-2n=0.
(1)求數列{an}的通項公式an;
(2)令bn=,求數列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列的首項為,公差為,數列滿足,.
(1)求數列的通項公式;
(2)記,求數列的前項和.
(注:表示的最大值.)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列{an}的前n項和Sn滿足S3=0,S5=-5.
(1)求{an}的通項公式;
(2)求數列的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列是等差數列,
(1)判斷數列是否是等差數列,并說明理由;
(2)如果,試寫出數列的通項公式;
(3)在(2)的條件下,若數列得前n項和為,問是否存在這樣的實數,使當且僅當時取得最大值。若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案