【題目】某學校為倡導全體學生為特困學生捐款,舉行“一元錢,一片心,誠信用水”活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢。現(xiàn)統(tǒng)計了連續(xù)5天的售出和收益情況,如下表:
售出水量x(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(單位:元) | 165 | 142 | 148 | 125 | 150 |
(Ⅰ) 若x與y成線性相關,則某天售出8箱水時,預計收益為多少元?
(Ⅱ) 期中考試以后,學校決定將誠信用水的收益,以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生考入年級前200名,獲一等獎學金500元;考入年級201—500 名,獲二等獎學金300元;考入年級501名以后的特困生將不獲得獎學金。甲、乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,不獲得獎學金的概率均為.
⑴在學生甲獲得獎學金條件下,求他獲得一等獎學金的概率;
⑵已知甲、乙兩名學生獲得哪個等第的獎學金是相互獨立的,求甲、乙兩名學生所獲得獎學金總金額X 的分布列及數(shù)學期望。
附: , 。
【答案】(Ⅰ)186元;(Ⅱ)(1);(2)分布列見解析,期望為600.
【解析】試題分析:
(Ⅰ)由題意可求得回歸方程為,據(jù)此預測售出8箱水時,預計收益為186元;
(Ⅱ) (1)由條件概率公式可得他獲得一等獎學金的概率是;
(2) 由題意可得X的取值可能為0,300,500,600,800,1000,據(jù)此求得分布列,然后計算可得數(shù)學期望為600.
試題解析:
,
,
…
當時,
即某天售出8箱水的預計收益是186元。
(Ⅱ) ⑴設事件A為“學生甲獲得獎學金”,事件B為“學生甲獲得一等獎學金”,
則即學生甲獲得獎學金的條件下,獲得一等獎學金的概率為
⑵X的取值可能為0,300,500,600,800,1000
,,
,,
即的分布列為:
(元)
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心為C的圓經過點A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標準方程;
(2)若P(x,y)是圓C上的動點,求3x﹣4y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,以x軸正半軸為極軸,曲線C的極坐標方程為ρ= . (Ⅰ)將曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)過點P(0,2)作斜率為1直線l與曲線C交于A,B兩點,試求 + 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有編號為1,2,3的三個白球,編號為4,5,6的三個黑球,這六個球除編號和顏色外完全相同,現(xiàn)從中任意取出兩個球.
(1)求取得的兩個球顏色相同的概率;
(2)求取得的兩個球顏色不相同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是邊長為2的正方形的邊的中點,將與分別沿、折起,使得點與點重合,記為點,得到三棱錐.
(Ⅰ)求證:平面平面;
(Ⅱ)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)y=2sin(2x+ )的圖象,只需把函數(shù)y=2sinx的圖象( )
A.向左平移 個單位長度,再把所得各點的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變)
B.向左平移 個單位長度,再把所得各點的橫坐標變?yōu)樵瓉淼? 倍(縱坐標不變)
C.各點的縱坐標不變、橫坐標變?yōu)樵瓉淼?倍,再把所得圖象向左平移 個單位長度
D.各點的縱坐標不變、橫坐標變?yōu)樵瓉淼? 倍,再把所得圖象向左平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的右焦點在直線: 上,且橢圓上任意兩個關于原點對稱的點與橢圓上任意一點的連線的斜率之積為.
(1)求橢圓的方程;
(2)若直線經過點,且與橢圓有兩個交點, ,是否存在直線: (其中)使得, 到的距離, 滿足恒成立?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com