【題目】已知函數(shù)f(x)=2lnx﹣x2 , 若方程f(x)+m=0在 內(nèi)有兩個(gè)不等的實(shí)根,則實(shí)數(shù)m的取值范圍是 .
【答案】
【解析】解:函數(shù)f(x)=2lnx﹣x2 , 若方程f(x)+m=0在 內(nèi)有兩個(gè)不等的實(shí)根, 即函數(shù)f(x)=2lnx﹣x2 , 與y=﹣m在 內(nèi)有兩個(gè)不相同的交點(diǎn),
f′(x)= ﹣2x,令 ﹣2x=0可得x=±1,當(dāng)x∈[ ,1)時(shí)f′(x)>0,函數(shù)是增函數(shù),當(dāng)x∈(1,e)時(shí),f′(x)<0,函數(shù)是減函數(shù),
函數(shù)的最大值為:f(1)=﹣1,f( )=﹣2﹣ ,f(e)=2﹣e2 . 函數(shù)的最小值為:2﹣e2 .
方程f(x)+m=0在 內(nèi)有兩個(gè)不等的實(shí)根,只需:﹣2﹣ ,
解得m∈ .
所以答案是: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f( )+f( )等于( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (x∈R),如圖是函數(shù)f(x)在[0,+∞)上的圖象,
(1)求a的值,并補(bǔ)充作出函數(shù)f(x)在(﹣∞,0)上的圖象,說(shuō)明作圖的理由;
(2)根據(jù)圖象指出(不必證明)函數(shù)的單調(diào)區(qū)間與值域;
(3)若方程f(x)=lnb恰有兩個(gè)不等實(shí)根,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在參加市里主辦的科技知識(shí)競(jìng)賽的學(xué)生中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組,成績(jī)大于等于40分且小于50分;第二組,成績(jī)大于等于50分且小于60分;……第六組,成績(jī)大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的40名學(xué)生中.
(1)求成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù)及成績(jī)?cè)趨^(qū)間內(nèi)平均成績(jī);
(2)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選3名學(xué)生,求至少有1名學(xué)生成績(jī)?cè)趨^(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)y=x3m﹣9(m∈N*)的圖象關(guān)于y軸對(duì)稱(chēng),且在(0,+∞)上函數(shù)值隨x增大而減。
(1)求m的值;
(2)求滿足(a+1) <(3﹣2a) 的a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,
試求當(dāng)時(shí), 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高新技術(shù)公司要生產(chǎn)一批新研發(fā)的款手機(jī)和款手機(jī),生產(chǎn)一臺(tái)款手機(jī)需要甲材料,乙材料,并且需要花費(fèi)1天時(shí)間,生產(chǎn)一臺(tái)款手機(jī)需要甲材料,乙材料,也需要1天時(shí)間,已知生產(chǎn)一臺(tái)款手機(jī)利潤(rùn)是1000元,生產(chǎn)一臺(tái)款手機(jī)的利潤(rùn)是2000元,公司目前有甲、乙材料各,則在不超過(guò)120天的情況下,公司生產(chǎn)兩款手機(jī)的最大利潤(rùn)是__________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函數(shù)f(x)在[﹣1,3m]上不具有單調(diào)性,求實(shí)數(shù)m的取值范圍;
(2)若f(1)=g(1)
①求實(shí)數(shù)a的值;
②設(shè)t1= f(x),t2=g(x),t3=2x , 當(dāng)x∈(0,1)時(shí),試比較t1 , t2 , t3的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣5x﹣18
(1)求不等式g(x)<0的解集
(2)若對(duì)一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com