【題目】某高新技術(shù)公司要生產(chǎn)一批新研發(fā)的款手機(jī)和款手機(jī),生產(chǎn)一臺(tái)款手機(jī)需要甲材料,乙材料,并且需要花費(fèi)1天時(shí)間,生產(chǎn)一臺(tái)款手機(jī)需要甲材料,乙材料,也需要1天時(shí)間,已知生產(chǎn)一臺(tái)款手機(jī)利潤是1000元,生產(chǎn)一臺(tái)款手機(jī)的利潤是2000元,公司目前有甲、乙材料各,則在不超過120天的情況下,公司生產(chǎn)兩款手機(jī)的最大利潤是__________元.

【答案】210000

【解析】設(shè)生產(chǎn)款手機(jī)和款手機(jī)、件,利潤之和為元,則根據(jù)題意可得,目標(biāo)函數(shù)為

,目標(biāo)函數(shù)表示直線的縱軸截距的2000倍,由圖可知,當(dāng)直線經(jīng)過點(diǎn)點(diǎn)時(shí), 取得最大值。聯(lián)立方程,解得.所以當(dāng),時(shí),目標(biāo)函數(shù)取得最大值, .

點(diǎn)晴:本題考查的是線性規(guī)劃問題,線性規(guī)劃問題的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最值會(huì)在可行域的端點(diǎn)或邊界上取得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不用計(jì)算器求下列各式的值
(1)lg52+ lg8+lg5lg20+(lg2)2
(2)設(shè)2a=5b=m,且 + =2,求m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx﹣x2 , 若方程f(x)+m=0在 內(nèi)有兩個(gè)不等的實(shí)根,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是(
A.y=3﹣x
B.y=x2+1
C.y=
D.y=﹣x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)、兩種產(chǎn)品,且產(chǎn)品的質(zhì)量用質(zhì)量指標(biāo)來衡量,質(zhì)量指標(biāo)越大表明產(chǎn)品質(zhì)量越好.現(xiàn)按質(zhì)量指標(biāo)劃分:質(zhì)量指標(biāo)大于或等于82為一等品,質(zhì)量指標(biāo)小于82為二等品.現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:

測(cè)試指標(biāo)

產(chǎn)品

8

12

40

32

8

產(chǎn)品

7

18

40

29

6

(Ⅰ)請(qǐng)估計(jì)產(chǎn)品的一等獎(jiǎng);

(Ⅱ)已知每件產(chǎn)品的利潤(單位:元)與質(zhì)量指標(biāo)值的關(guān)系式為:

已知每件產(chǎn)品的利潤(單位:元)與質(zhì)量指標(biāo)值的關(guān)系式為:

(i)分別估計(jì)生產(chǎn)一件產(chǎn)品,一件產(chǎn)品的利潤大于0的概率;

(ii)請(qǐng)問生產(chǎn)產(chǎn)品, 產(chǎn)品各100件,哪一種產(chǎn)品的平均利潤比較高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
(Ⅰ)求證:AE∥平面DCF;
(Ⅱ)當(dāng)AB的長為何值時(shí),二面角A﹣EF﹣C的大小為60°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,設(shè)
(Ⅰ)求B 的值
(Ⅱ)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖直三棱柱, , 、分別為的中點(diǎn)。

求證:(1)平面;

(2)∥平面。

查看答案和解析>>

同步練習(xí)冊(cè)答案