【題目】實(shí)數(shù)m取什么值時,復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn).

(1)位于第四象限?

(2)位于第一、三象限?

(3)位于直線yx上?

【答案】(1);(2);(3)

【解析】

試題(1)由題意得,復(fù)數(shù)位于第四象限,則實(shí)部大于,虛部小于,列出方程組即可求解實(shí)數(shù)的取值范圍;

(2)根據(jù)復(fù)數(shù)的定義和復(fù)數(shù)的表示,列出不等式組,即可求解實(shí)數(shù)的取值范圍;

(3)使得復(fù)數(shù)位于直線上,只需實(shí)部與虛部相等即可求解實(shí)數(shù)的值

試題解析:

(1)

解得-2<m<35<m<7,此時復(fù)數(shù)z對應(yīng)的點(diǎn)位于第四象限.

(2)

可等價轉(zhuǎn)化為(m2-8m+15)(m2-5m-14)>0,即(m-3)(m-5)(m+2)(m-7)>0,

利用數(shù)軸標(biāo)根法可得:m<-23<m<5m>7,此時復(fù)數(shù)z對應(yīng)的點(diǎn)位于第一、三象限.

(3)要使點(diǎn)Z在直線y=x上,需m2-8m+15=m2-5m-14,解得m=.此時,復(fù)數(shù)z對應(yīng)的點(diǎn)位于直線y=x上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某鐵制零件由一個正四棱柱和一個球組成,已知正四棱柱底面邊長與球的直徑均為1cm,正四棱柱的高為2cm.現(xiàn)有這種零件一盒共50kg,取鐵的密度為.

1)估計有多少個這樣的零件;

2)如果要給這盒零件的每個零件表面涂上一種特殊的材料,則需要能涂多少平方厘米的材料(球與棱柱接口處的面積不計,結(jié)果精確到)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲,乙兩種圖畫紙,計劃每種圖畫紙的生產(chǎn)量不少于8t,已知生產(chǎn)甲種圖畫紙1t要用蘆葦7t、黃麻3t、楓樹5t;生產(chǎn)乙種圖畫紙1t要用蘆葦3t、黃麻4t、楓樹8 t.現(xiàn)在倉庫內(nèi)有蘆葦300t、黃麻150t.楓樹200t,試列出滿足題意的不等式組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處切線的斜率為,求此切線方程

(2)若有兩個極值點(diǎn),求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】校園準(zhǔn)備綠化一塊直徑為的半圓形空地,點(diǎn)在半圓圓弧上,外的地方種草,的內(nèi)接正方形為一水池(,邊上),其余地方種花,若, ,設(shè)的面積為,正方形面積為

1)用表示;

2)當(dāng)固定,變化時,求最小值及此時的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的左焦點(diǎn)作圓的切線,切點(diǎn)為,延長交拋物線于點(diǎn),若是線段的中點(diǎn),則雙曲線的離心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場按月訂購一種家用電暖氣,每銷售一臺獲利潤200元,未銷售的產(chǎn)品返回廠家,每臺虧損50元,根據(jù)往年的經(jīng)驗,每天的需求量與當(dāng)天的最低氣溫有關(guān),如果最低氣溫位于區(qū)間,需求量為100臺;最低氣溫位于區(qū)間,需求量為200臺;最低氣溫位于區(qū)間,需求量為300臺。公司銷售部為了確定11月份的訂購計劃,統(tǒng)計了前三年11月份各天的最低氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:

最低氣溫(℃)

天數(shù)

11

25

36

16

2

以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.

求11月份這種電暖氣每日需求量(單位:臺)的分布列;

若公司銷售部以每日銷售利潤(單位:元)的數(shù)學(xué)期望為決策依據(jù),計劃11月份每日訂購200臺或250臺,兩者之中選其一,應(yīng)選哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

當(dāng),求曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積;

在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),,為曲線上的一動點(diǎn).

(I)求動點(diǎn)對應(yīng)的參數(shù)從變動到時,線段所掃過的圖形面積;

(Ⅱ)若直線與曲線的另一個交點(diǎn)為,是否存在點(diǎn),使得為線段的中點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案