已知在△ABC中,AB=BC=3,AC=4,設(shè)O是△ABC的內(nèi)心,若
AO
=m
AB
+n
AC
,則m:n=
4:3
4:3
分析:以AC所在直線為x軸,AC的垂直平分線為y軸建立坐標(biāo)系,求得向量的坐標(biāo),利用
AO
,即可求得m+n的值.
解答:解:由題意,以AC所在直線為x軸,AC的垂直平分線為y軸建立坐標(biāo)系,由于AB=BC=3,AC=4,則A(-2,0),C(2,0),
故B(0,
32-22
)=(0,
5
),
AB
=(2,
5
),
AC
=(4,0)
因?yàn)辄c(diǎn)O在∠ABC的平分線上,所以
AO
AB
AC
的單位向量的和向量共線.
設(shè)這個(gè)和向量為
u
,則
u
=
1
3
AB
+
1
4
AC

m:n=
1
3
1
4
=4:3

故答案為:4:3.
點(diǎn)評(píng):本題考查向量知識(shí),考查平面向量基本定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,A>B,且tanA與tanB是方程x2-5x+6=0的兩個(gè)根.
(Ⅰ)求tan(A+B)的值;
(Ⅱ)若AB=5,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,a=2
3
,c=6,A=30°
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,∠A=120°,記
α
=
BA
|
BA
|cosA
+
BC
|
BC
|cosC
β
=
CA
|CA|
cosA
+
CB
|
CB
|sinB
CB
|
CB
|cosB
,則向量
α
β
的夾角為
120°
120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,a=2
3
,b=6,A=30°,解三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,a,b,c為內(nèi)角A,B,C所對(duì)的邊長(zhǎng),r為內(nèi)切圓的半徑,則△ABC的面積S=
1
2
(a+b+c)
•r,將此結(jié)論類比到空間,已知在四面體ABCD中,已知在四面體ABCD中,
S1,S2,S3,S4分別為四個(gè)面的面積,r為內(nèi)切球的半徑
S1,S2,S3,S4分別為四個(gè)面的面積,r為內(nèi)切球的半徑
,則
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r

查看答案和解析>>

同步練習(xí)冊(cè)答案