【題目】如圖,某地有南北街道5條,東西街道5條,現(xiàn)在甲、乙、丙3名郵遞員從該地西南角的郵局出發(fā),送信到東北角的地,要求所走路程最短,設(shè)圖中點(diǎn),是交叉路口,且路段由于修路不能通行.

(1)求甲從共有多少種走法?(用數(shù)字作答

(2)求甲經(jīng)過點(diǎn)的概率;

(3)設(shè)3名郵遞員恰有名郵遞員經(jīng)過點(diǎn),求隨機(jī)變量的概率分布和數(shù)學(xué)期望.

【答案】(1)52種(2)(3)見解析

【解析】

(1)先求出從的所有走法(不考慮路況),再減去走路段的走法,即可得出結(jié)果;

(2)先求出甲經(jīng)過點(diǎn)的所有走法:分兩步進(jìn)行,第一步求出從的所有走法(不含路段),第二步求從的走法,結(jié)果相乘即可求出甲經(jīng)過點(diǎn)的所有走法;再根據(jù)(1)的結(jié)果,即可得出所求概率;

3)先確定隨機(jī)變量可能的取值,分別求出其對應(yīng)的概率,即可求出分布列,得出數(shù)學(xué)期望.

解:(1)由題意可得:.

答:甲有52種不同走法.

(2)因為甲從的所有走法(不含路段)共有種;從的走法共有種,所以甲經(jīng)過點(diǎn)的有種不同走法,

記“甲經(jīng)過點(diǎn)”為事件,所以.

答:甲經(jīng)過點(diǎn)的概率是.

(3)隨機(jī)變量可能的取值為0,1,2,3.

;

;

;

0

1

2

3

從而 .

答:隨機(jī)變量的數(shù)學(xué)期望是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列兩組數(shù)據(jù):甲:12,1311,10,14.乙:10,1710,13,10.

1)分別計算兩組數(shù)據(jù)的平均差,并根據(jù)計算結(jié)果判斷哪組數(shù)據(jù)波動大.

2)分別計算兩組數(shù)據(jù)的方差,并根據(jù)計算結(jié)果判斷哪組數(shù)據(jù)波動大.

3)以上兩種判斷方法的結(jié)果是否一致?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個函數(shù)當(dāng)自變量在不同范圍內(nèi)取值時,函數(shù)表達(dá)式不同,我們稱這樣的函數(shù)為分段函數(shù).下面我們參照學(xué)習(xí)函數(shù)的過程與方法,探究分段函數(shù)的圖象與性質(zhì).列表:

x

0

1

2

3

y

1

2

1

0

1

2

描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值y為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示.

1)如圖,在平面直角坐標(biāo)系中,觀察描出的這些點(diǎn)的分布,作出函數(shù)圖象;

2)研究函數(shù)并結(jié)合圖象與表格,回答下列問題:

①點(diǎn),,,在函數(shù)圖象上,   ,   ;(填,

②當(dāng)函數(shù)值時,求自變量x的值;

③在直線的右側(cè)的函數(shù)圖象上有兩個不同的點(diǎn),,且,求的值;

④若直線與函數(shù)圖象有三個不同的交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組對函數(shù)的圖象和性質(zhì)將進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.

1)自變量的取值范圍是除外的全體實(shí)數(shù),的幾組對應(yīng)值列表如下:

其中,_________;

2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn)并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;

3)觀察函數(shù)圖象,寫出一條函數(shù)性質(zhì);

4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):

①函數(shù)圖象與軸交點(diǎn)情況是________,所以對應(yīng)方程的實(shí)數(shù)根的情況是________;

②方程_______個實(shí)數(shù)根;

③關(guān)于的方程個實(shí)數(shù)根,的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程.

(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】月份,某市街頭出現(xiàn)共享單車,到月份,根據(jù)統(tǒng)計,市區(qū)所有人騎行過共享單車的人數(shù)已占,騎行過共享單車的人數(shù)中,有是大學(xué)生(含大中專及高職),該市區(qū)人口按萬計算,大學(xué)生人數(shù)約萬人.

1)任選出一名大學(xué)生,求他(她)騎行過共享單車的概率;

2)隨單車投放數(shù)量增加,亂停亂放成為城市管理的問題,以下是累計投放單車數(shù)量與亂停亂放單車數(shù)量之間的關(guān)系圖表:

累計投放單車數(shù)量

亂停亂放單車數(shù)量

①計算關(guān)于的線性回歸方程(其中精確到值保留三位有效數(shù)字),并預(yù)測當(dāng)時,單車亂停亂放的數(shù)量;

②已知該市共有五個區(qū),其中有兩個區(qū)的單車亂停亂放數(shù)量超過標(biāo)準(zhǔn).在“雙創(chuàng)”活動中,檢查組隨機(jī)抽取三個區(qū)調(diào)查單車亂停亂放數(shù)量, 表示“單車亂停亂放數(shù)量超過標(biāo)準(zhǔn)的區(qū)的個數(shù)”,求的分布列和數(shù)學(xué)期望.

參考公式和數(shù)據(jù):回歸直線方程中的斜率和截距的最小二乘法估計公式分別為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一容量為50的樣本,數(shù)據(jù)的分組以及各組的頻數(shù)如下:

[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.

(1)列出樣本的頻率分布表.

(2)畫出頻率分布直方圖.

(3)根據(jù)頻率分布表,估計數(shù)據(jù)落在[15.5,24.5)內(nèi)的可能性約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:


喜愛打籃球

不喜愛打籃球

合計

男生


5


女生

10



合計



50

已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為

1)請將上面的列聯(lián)表補(bǔ)充完整;

2)是否在犯錯誤的概率不超過0.5%的前提下認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.下面的臨界值表供參考:


0.15

0.10

0.05

0.025

0.010

0.005]

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入12月以業(yè),在華北地區(qū)連續(xù)出現(xiàn)兩次重污染天氣的嚴(yán)峻形勢下,我省堅持保民生,保藍(lán)天,各地嚴(yán)格落實(shí)機(jī)動車限行等一系列“管控令”,某市交通管理部門為了了解市民對“單雙號限行”的態(tài)度,隨機(jī)采訪了200名市民,將他們的意見和是否擁有私家車的情況進(jìn)行了統(tǒng)計,得到如下的列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

90

20

110

有私家車

70

40

110

合計

160

60

220

(1)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過的前提下認(rèn)為“對限行的態(tài)度與是否擁有私家車有關(guān)”;

(2)為了了解限行之后是否對交通擁堵、環(huán)境染污起到改善作用,從上述調(diào)查的不贊同限行的人員中按是否擁有私家車分層抽樣抽取6人,再從這6人中隨機(jī)抽出3名進(jìn)行電話回訪,求3人中至少有1人沒有私家車的概率.

附: ,其中.

查看答案和解析>>

同步練習(xí)冊答案