如圖,已知直三棱柱ABC-A1B1C1(側(cè)棱與底面垂直的三棱柱為直三棱柱)中,CA=CB,D,D1,E分別為邊AB,A1B1,BC1的中點(diǎn).
(1)求證:平面ABC1⊥平面DCC1D1;
(2)若D1在平面ABC1的射影F在邊AE上,且
AA 1
AB
=
1
2
,求直線AD1與平面ABC1所成角的正弦值.
考點(diǎn):直線與平面所成的角,平面與平面垂直的判定
專(zhuān)題:計(jì)算題,證明題,空間位置關(guān)系與距離,空間角
分析:(1)運(yùn)用線面垂直的判定定理和性質(zhì)定理,以及面面垂直的判定定理即可證得;
(2)由(1)的結(jié)論和D1在平面ABC1的射影F在邊AE上,得到F為△ABC1的重心,運(yùn)用射影定理知,D1C1=
2
DD1
設(shè)DD1=a,求出D1F、AD1的長(zhǎng),由直線與平面所成的角的定義得到∠D1AF是所成的角,求出正弦值即可.
解答: (1)證明:∵CA=CB,D為AB的中點(diǎn),∴CD⊥AB,
∵CC1⊥平面ABC,∴CC1⊥AB,∴AB⊥平面DCC1D1,
∵AB?平面ABC1,∴平面ABC1⊥平面DCC1D1;
(2)解:由(1)平面ABC1⊥平面DCC1D1,
∴D1在平面ABC1上的射影F在交線C1D上,
已知F也在AE上,且C1D,AE為△ABC1的中線,
∴F為△ABC1的重心,且
C1F
=2
FD
,
∵在△DD1C1中,∠DD1C1為直角,D1F⊥DC1,
利用射影定理知,D1C1=
2
DD1,設(shè)DD1=a,則D1C1=
2
a,D1F=
6
3
a
,AD=a,AD1=
2
a,
∴sin∠D1AF=
6
3
a
2
a
=
3
3
,即直線AD1與平面ABC1所成的角的正弦值為
3
3
點(diǎn)評(píng):本題主要考查空間直線與平面的位置關(guān)系,考查直線與平面垂直的判定和性質(zhì),以及面面垂直的判定,同時(shí)考查空間的角:直線與平面所成的角,考查基本的運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體是由圓柱和正三棱錐組合而成,其正視圖和俯視圖如圖所示,則該幾何體的表面積是(  )
A、4π+
3
2
3
B、4π+
9
4
3
C、2π+
3
2
3
D、2π+
9
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,a=3,cos
A+C
2
=
3
3
,且△ABC面積是2
2

(1)求cosB的值;
(2)求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等比數(shù)列,其前n項(xiàng)和為Sn,且滿足16(a1+a4)+7=0,S1,S3,S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=n(n∈N+),記cn=(-1)nbnan-1,求數(shù)列{cn}前n項(xiàng)和f(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形PDCE為矩形,四邊形ABCD為直角梯形,且∠BAD=∠ADC=90°,平面PDCE⊥平面ABCD,AB=AD=
1
2
CD=1,PD=
2

(Ⅰ)若M為PA中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)求該幾何體被平面PBD所分成的兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A(-m,0),B(m,0)(m≠0),直線AC,BC相交于C,而且他們的斜率之積為-
1
m2
,若點(diǎn)P(1,
2
2
)是點(diǎn)C的軌跡上的點(diǎn),直線l的方程為x=2.
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)過(guò)點(diǎn)E(1,0)的直線與點(diǎn)C的軌跡相交于D,M兩點(diǎn)(不經(jīng)過(guò)P點(diǎn)),直線DM與直線l相交于N,記直線PD,PM,PN的斜率分別為k1,k2,k3.求證:k1+k2=2k3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinωx+cosωx-1(ω>0)相鄰兩個(gè)最大值間的距離為π,
(1)求ω的值;
(2)求f(x)在區(qū)間[-π,0]上的所有零點(diǎn)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+ex(a∈R)有且僅有兩個(gè)極值點(diǎn)x1,x2(x1<x2).
(1)求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a滿足f(x1)=e 
2
3
x1?如存在,求f(x)的極大值;如不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出S的值是4,則輸入正整數(shù)n的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案