設(shè)函數(shù)

(Ⅰ)試問(wèn)函數(shù)能否在處取得極值,請(qǐng)說(shuō)明理由;

(Ⅱ)若,當(dāng)時(shí),函數(shù)的圖像有兩個(gè)公共點(diǎn),求的取值范圍.

 

【答案】

(Ⅰ) (Ⅱ)

【解析】

試題分析:(Ⅰ)由題設(shè)可知:, 即,解得 

(Ⅱ), 又上為減函數(shù),                          

對(duì)恒成立, 即對(duì)恒成立.

,  

的取值范圍是

考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,不等式恒成立問(wèn)題。

點(diǎn)評(píng):中檔題,利用導(dǎo)數(shù)研究函數(shù)的極值,一般遵循“求導(dǎo)數(shù)、求駐點(diǎn)、研究導(dǎo)數(shù)的正負(fù)、確定極值”,利用“表解法”,清晰易懂。不等式恒成立問(wèn)題,往往通過(guò)構(gòu)造函數(shù),通過(guò)研究函數(shù)的最值確定參數(shù)的范圍。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-3x+3)ex,x∈[-2,t](t>-2)
(1)當(dāng)t<l時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)比較f(-2)與f (t)的大小,并加以證明;
(3)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間,設(shè)g(x)=f(x)+(x-2)ex,試問(wèn)函數(shù)g(x)在(1,+∞)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種商品在30天內(nèi)每件的銷(xiāo)售價(jià)格P(元)與時(shí)間t(天)      的函數(shù)

關(guān)系用如圖所示的兩條直線(xiàn)段表示:

又該商品在30天內(nèi)日銷(xiāo)售量Q(件)與時(shí)間t(天)之間的關(guān)系

如下表所示:

第t天

5

15

20

30

Q/件

35

25

20

10

(1)根據(jù)題設(shè)條件,寫(xiě)出該商品每件的銷(xiāo)售價(jià)格P與時(shí)間t的函

數(shù)關(guān)系式;并確定日銷(xiāo)售量Q與時(shí)間t的一個(gè)函數(shù)關(guān)系式;

(2),試問(wèn)30天中第幾天日銷(xiāo)售金額最大?最大金額為多少元?    

(日銷(xiāo)售金額=每件的銷(xiāo)售價(jià)格×日銷(xiāo)售量).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最

2當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間.設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北衡水中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間。設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2﹣3x+3)ex,x∈[﹣2,t](t>﹣2)

(1)當(dāng)t<l時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)比較f(﹣2)與f (t)的大小,并加以證明;

(3)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間,設(shè)g(x)=f(x)+(x﹣2)ex,試問(wèn)函數(shù)g(x)在(1,+∞)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案