已知函數(shù).
(1)求的最小值;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)在上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.
(1)在處取得最小值.
(2)函數(shù)在上不存在保值區(qū)間,證明見解析.
【解析】
試題分析:(1)求導(dǎo)數(shù),解得函數(shù)的減區(qū)間;
解,得函數(shù)的增區(qū)間.
確定在處取得最小值.
也可以通過“求導(dǎo)數(shù)、求駐點(diǎn)、研究函數(shù)的單調(diào)區(qū)間、確定極值(最值)” .
(2)函數(shù)在上不存在保值區(qū)間.
函數(shù)存在保值區(qū)間即函數(shù)存在自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同.因此,可以假設(shè)函數(shù)存在保值區(qū)間,研究對(duì)應(yīng)函數(shù)值的取值區(qū)間.在研究函數(shù)值取值區(qū)間過程中,要么得到肯定結(jié)論,要么得到矛盾結(jié)果.本題通過求導(dǎo)數(shù):,明確時(shí), ,得到所以為增函數(shù),因此
轉(zhuǎn)化得到方程有兩個(gè)大于的相異實(shí)根,構(gòu)造函數(shù) 后知其為單調(diào)函數(shù),推出矛盾,作出結(jié)論.
試題解析:
(1)求導(dǎo)數(shù),得.
令,解得. 2分
當(dāng)時(shí),,所以在上是減函數(shù);
當(dāng)時(shí),,所以在上是增函數(shù).
故在處取得最小值. 6分
(2)函數(shù)在上不存在保值區(qū)間,證明如下:
假設(shè)函數(shù)存在保值區(qū)間,
由得:
因時(shí), ,所以為增函數(shù),所以
即方程有兩個(gè)大于的相異實(shí)根 9分
設(shè)
因,,所以在上單增
所以在區(qū)間上至多有一個(gè)零點(diǎn) 12分
這與方程有兩個(gè)大于的相異實(shí)根矛盾
所以假設(shè)不成立,即函數(shù)在上不存在保值區(qū)間. 13分
考點(diǎn):新定義問題,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最(極)值,轉(zhuǎn)化與化歸思想,間接推理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012年江蘇省蘇州市高三一?记斑m應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西師大附中高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意,總存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三11月模塊檢測(cè)數(shù)學(xué)文科試卷 題型:解答題
已知函數(shù),(1)求的定義域; (2)使 的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆湖南省高二學(xué)業(yè)水平二模考試數(shù)學(xué) 題型:解答題
已知函數(shù),(1)求的最小正周期;(2)求 的最大值,并求使取得最大值時(shí)的的集合。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com