【題目】已知函數(shù),函數(shù), , 且.
(1)討論函數(shù)的單調(diào)性;
(2)若,且對任意的,總存在,使成立,求實數(shù)的取值范圍.
【答案】(1)當(dāng)時, 在上單調(diào)遞減,當(dāng)時, 在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;(2).
【解析】試題分析:(1)確定函數(shù)定義域,對函數(shù)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負確定單調(diào)區(qū)間;(2)分別表示出的值域,根據(jù)的值域應(yīng)為的值域的子集可得答案.
試題解析:(1),………………………………1分
當(dāng)時, ,則在上單調(diào)遞減.……………………2分
當(dāng)時, 得;由得.…………………………4分
∴在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.………………5分
(2)∵對任意的,總存在,使,
∴對任意的,總存在,使,………………6分
設(shè)在上的值域為,函數(shù)在上的值域為,則.……7分
當(dāng)時, ,即函數(shù)在上單調(diào)遞減,∴,…………………………………………………………8分
,
①當(dāng)時, 在上是減函數(shù),此時, 的值域為,
∵,又,∴,即.………………10分
②當(dāng)時, 在上是增函數(shù),此時, 的值域為,∵,
∴,∴,
綜上可知的取值范圍是.…………………………12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)以往經(jīng)驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為1.5(升),記該潛水員在此次考察活動中的總用氧量為(升).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若 ,求當(dāng)下潛速度取什么值時,總用氧量最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺A、B設(shè)備上加工一件甲所需工時分別為1,2,加工一件乙設(shè)備所需工時分別為2,1.A、B兩種設(shè)備每月有效使用臺時數(shù)分別為400和500,分別用表示計劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中, , , 為的中點,連接,過點作交于點,連接,已知.
(1)求證: ;
(2)若,求的長度;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一塊圓心角為120°,半徑為20cm的扇形鋼片裁出一塊矩形鋼片,如圖有兩種裁法:使矩形一邊在扇形的一條半徑OA上,或者讓矩形一邊與弦AB平行,試問哪種裁法能使截得的矩形鋼片面積最大?并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市決定在其經(jīng)濟開發(fā)區(qū)一塊區(qū)域進行商業(yè)地產(chǎn)開發(fā),截止2015年底共投資百萬元用于餐飲業(yè)和服裝業(yè),2016年初正式營業(yè),經(jīng)過專業(yè)經(jīng)濟師預(yù)算,從2016年初至2019年底的四年間,在餐飲業(yè)利潤為該業(yè)務(wù)投資額的,在服裝業(yè)可獲利該業(yè)務(wù)投資額的算術(shù)平方根.
(1)該市投資資金應(yīng)如何分配,才能使這四年總的預(yù)期利潤最大?
(2)假設(shè)自2017年起,該市決定對所投資的區(qū)域設(shè)施進行維護保養(yǎng),同時發(fā)放員工獎金,方案如下:2017年維護保養(yǎng)費用百萬元,以后每年比上一年增加百萬元;2017年發(fā)放員工獎金共計百萬元,以后每年的獎金比上一年增加.若該市投資成功的標(biāo)準(zhǔn)是:從2016年初到2019的底,這四年總的預(yù)期利潤中值(預(yù)期最大利潤與最小利潤的平均數(shù))不低于總投資額的,問該市投資是否成功?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的單調(diào)遞減的奇函數(shù),當(dāng)時, .
(1)求的值;
(2)求的解析式;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,曲線C:(x-1)2+y2=1.直線l經(jīng)過點P(m,0),且傾斜角為,以O為極點,x軸正半軸為極軸,建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于A,B兩點,且|PA|·|PB|=1,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com