【題目】某企業(yè)購(gòu)買(mǎi)某種儀器,在儀器使用期間可能出現(xiàn)故障,需要請(qǐng)銷(xiāo)售儀器的企業(yè)派工程師進(jìn)行維修,因?yàn)榭紤]到人力、成本等多方面的原因,銷(xiāo)售儀器的企業(yè)提供以下購(gòu)買(mǎi)儀器維修服務(wù)的條件:在購(gòu)買(mǎi)儀器時(shí),可以直接購(gòu)買(mǎi)儀器維修服務(wù),維修一次1000元;在儀器使用期間,如果維修服務(wù)次數(shù)不夠再次購(gòu)買(mǎi),則需要每次1500元..現(xiàn)需決策在購(gòu)買(mǎi)儀器的同時(shí)購(gòu)買(mǎi)幾次儀器維修服務(wù),為此搜集并整理了500臺(tái)這種機(jī)器在使用期內(nèi)需要維修的次數(shù),得到如下表格:

維修次數(shù)

5

6

7

8

9

頻數(shù)(臺(tái))

50

100

150

100

100

表示一臺(tái)儀器使用期內(nèi)維修的次數(shù),表示一臺(tái)儀器使用期內(nèi)維修所需要的費(fèi)用,表示購(gòu)買(mǎi)儀器的同時(shí)購(gòu)買(mǎi)的維修服務(wù)的次數(shù).

(1)若,求的函數(shù)關(guān)系式;

(2)以這500臺(tái)儀器使用期內(nèi)維修次數(shù)的頻率代替一臺(tái)儀器維修次數(shù)發(fā)生的概率,求的概率.

(3)假設(shè)購(gòu)買(mǎi)這500臺(tái)儀器的同時(shí)每臺(tái)都購(gòu)買(mǎi)7次維修服務(wù),或每臺(tái)都購(gòu)買(mǎi)8次維修服務(wù),請(qǐng)分別計(jì)算這500臺(tái)儀器在購(gòu)買(mǎi)維修服務(wù)所需要費(fèi)用的平均數(shù),以此為決策依據(jù),判斷購(gòu)買(mǎi)7次還是8次維修服務(wù)?

【答案】(1)(2)0.7(3)應(yīng)該購(gòu)買(mǎi)7次維修服務(wù).

【解析】

1)分別求得時(shí),關(guān)于的表達(dá)式,由此求得的函數(shù)關(guān)系式.2)利用的頻數(shù)和除以,得到所求的概率.3)分別計(jì)算出購(gòu)買(mǎi)次和次所需費(fèi)用的平均數(shù),由此判斷出應(yīng)該購(gòu)買(mǎi)此維修服務(wù).

解:(1)當(dāng)時(shí),;

當(dāng)時(shí),.

的函數(shù)關(guān)系式為.

(2)的概率為.

(3)購(gòu)買(mǎi)7次維修服務(wù)所需的平均費(fèi)用為.

購(gòu)買(mǎi)8次維修服務(wù)所需的平均費(fèi)用為.

因?yàn)?/span>,

故應(yīng)該購(gòu)買(mǎi)7次維修服務(wù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底而ABCD是菱形,且PA=AD=2,∠PAD=BAD=120°,E,F分別為PD,BD的中點(diǎn),且

1)求證:平面PAD⊥平面ABCD;

2)求銳二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),。

(Ⅰ)若 ,求的值;

(Ⅱ)討論函數(shù)的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在圓柱的底面圓上,為圓的直徑.

1)求證:;

2)若圓柱的體積,,求異面直線所成的角(用反三角函數(shù)值表示結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),動(dòng)點(diǎn)到直線的距離與動(dòng)點(diǎn)到點(diǎn)的距離之比為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)作任一直線交曲線兩點(diǎn),過(guò)點(diǎn)的垂線交直線于點(diǎn),求證:平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對(duì),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、b、c的三邊長(zhǎng),直線l的方程,圓.

1)若為直角三角形,c為斜邊長(zhǎng),且直線l與圓M相切,求c的值;

2)若為正三角形,對(duì)于直線l上任意一點(diǎn)P,在圓M上總存在一點(diǎn)Q,使得線段的長(zhǎng)度為整數(shù),求c的取值范圍;

3)點(diǎn),,,,設(shè)E、FG、H四點(diǎn)到直線l的距離之和為S,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái).隨著計(jì)劃生育政策效果的逐步顯現(xiàn)以及老齡化的加劇,我國(guó)經(jīng)濟(jì)發(fā)展的“人口紅利”在逐漸消退,在當(dāng)前形勢(shì)下,很多二線城市開(kāi)始了搶人大戰(zhàn)”,自2018年起,像西安、南京等二線城市人才引進(jìn)與落戶(hù)等政策放寬力度空前,至2019年發(fā)布各種人才引進(jìn)與落戶(hù)等政策的城市已經(jīng)有16個(gè)。某二線城市與2018年初制定人才引進(jìn)與落戶(hù)新政(即放寬政策,以下簡(jiǎn)稱(chēng)新政):碩士研究生及以上可直接落戶(hù)并享有當(dāng)?shù)卣婪ńo與的住房補(bǔ)貼,本科學(xué)歷畢業(yè)生可以直接落戶(hù),專(zhuān)科學(xué)歷畢業(yè)生在當(dāng)?shù)毓ぷ鲀赡暌陨峡梢月鋺?hù)。高中及以下學(xué)歷人員在當(dāng)?shù)毓ぷ?/span>10年以上可以落戶(hù)。新政執(zhí)行一年,2018年全年新增落戶(hù)人口較2017年全年增加了一倍,為了深入了解新增落戶(hù)人口結(jié)構(gòu)及變化情況,相關(guān)部門(mén)統(tǒng)計(jì)了該市新政執(zhí)行前一年(即2017年)與新政執(zhí)行一年(即2018年)新增落戶(hù)人口學(xué)歷構(gòu)成比例,得到如下餅圖:

則下面結(jié)論中錯(cuò)誤的是(

A. 新政實(shí)施后,新增落戶(hù)人員中本科生已經(jīng)超過(guò)半數(shù)

B. 新政實(shí)施后,高中及以下學(xué)歷人員新增落戶(hù)人口減少

C. 新政對(duì)碩士研究生及以上的新增落戶(hù)人口數(shù)量暫時(shí)未產(chǎn)生影響

D. 新政對(duì)專(zhuān)科生在該市落實(shí)起到了積極的影響

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點(diǎn)C在AB上,且ABCD,AC=BC=CD=2,現(xiàn)將△ACD沿CD折起,使點(diǎn)A到達(dá)點(diǎn)P的位置,且PE.

(1)求證:平面PBC 平面DEBC;

(2)求三棱錐P-EBC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案