已知函數(shù)f(x)=x3+ax2+bx.若y=f(x)的導(dǎo)數(shù)f′(x)對x∈[-1,1]都有f′(x)≤2,則
b
a-1
的范圍( 。
A、(-2,1]
B、(-∞,-2)∪[1,+∞)
C、(
1
2
,1]
D、[-2,
1
2
]
考點:導(dǎo)數(shù)的運算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:因為導(dǎo)函數(shù)x∈[-1,1]都有f′(x)≤2得到f′(1)和f′(-1)都小于等于2,聯(lián)立構(gòu)成不等式組,在平面直角坐標(biāo)系中畫出組成的區(qū)域如圖陰影部分,設(shè)z等于
b
a-1
,則z表示陰影部分中任意一點(a,b)與(1,0)連線的斜率,根據(jù)圖形可得出z的取值范圍.
解答: 解:f′(x)=3x2+2ax+b
f′(-1)=3-2a+b≤2
f′(1)=3+2a+b≤2
 得
2a-b-1≥0
2a+b+1≤0

不等式組確定的平面區(qū)域如圖陰影部分所示:
2a-b-1=0
2a+b=1=0
a=0
b=-1
,∴Q點的坐標(biāo)為(0,-1).
設(shè)z=
b
a-1
,則z表示平面區(qū)域內(nèi)的點(a,b)與點P(1,0)連線的斜率.
∵KPQ=1,由圖可知z≥1或z<-2,
z=
b
a-1
∈(-∞,-2)∪(1,+∞)
故選:B.
點評:本題考查了會利用導(dǎo)函數(shù)的正負(fù)確定原函數(shù)的單調(diào)區(qū)間,掌握函數(shù)取極值時所滿足的條件,以及會進(jìn)行簡單的線性規(guī)劃,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=5,BC=3,∠B=2∠A,則邊AC的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2xex在x=0處的導(dǎo)數(shù)f′(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)條件:a、b、c滿足c<b<a,且a+b+c=0,有如下推理:
(1)ac(a-c)>0 
(2)c(b-a)<0 
(3)cb2≤ab2
(4)ab>ac
其中正確的是( 。
A、(1)(2)
B、(3)(4)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中中,頂點P中在底面ABC中內(nèi)的射影為O中,若
(1)三條側(cè)棱與底面所成的角相等,
(2)三條側(cè)棱兩兩垂直,
(3)三個側(cè)面與底面所成的角相等;
則點O中依次為垂心、內(nèi)心、外心的條件分別是( 。
A、(1)(2)(3)
B、(3)(2)(1)
C、(2)(1)(3)
D、(2)(3)(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知導(dǎo)函數(shù)f′(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,且f(0)=-
3
4
,則y=f(x)的圖象可由函數(shù)g(x)=
1
2
cosx的圖象(縱坐標(biāo)不變)( 。
A、先把各點的橫坐標(biāo)縮短到原來的
1
2
倍,再向右平移
12
個單位
B、先把各點的橫坐標(biāo)伸長到原來的2倍,再向右平移
6
個單位
C、先把各點的橫坐標(biāo)縮短到原來的
1
2
倍,再向左平移
12
個單位
D、先把各點的橫坐標(biāo)伸長到原來的2倍,再向左平移
6
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行六面體ABCD-A1B1C1D1中AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°,則AC1的長為( 。
A、
13
B、
23
C、
33
D、
43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

反證法的關(guān)鍵是在正確的推理下得出矛盾,這個矛盾可以是( 。
①與已知條件矛盾; 
②與假設(shè)矛盾;
③與所證結(jié)論矛盾;
④與定義、定理、公理、法則矛盾;
⑤與事實矛盾.
A、①③④⑤B、①②④⑤
C、①②③⑤D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,點M、N分別為A′B和B′C′的中點.
(1)證明:MN∥平面A′ACC′;
(2)求三棱錐A′-MNC的體積;
(3)求二面角A′-MC-N的余弦值.

查看答案和解析>>

同步練習(xí)冊答案