分析 (1)利用同角三角函數(shù)關(guān)系式可求cosα,結(jié)合二倍角的正弦函數(shù)公式即可得解.
(2)利用(1)結(jié)論及兩角差的余弦函數(shù)公式即可化簡求值.
解答 解:(1)∵sinα=$\frac{3}{5}$,α∈$(\frac{π}{2},π)$.
∴cosα=$-\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$.
∴sin2α=2sinαcosα=2×$\frac{3}{5}×(-\frac{4}{5})$=-$\frac{24}{25}$.
(2)cos(α-$\frac{π}{3}$)=$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα=$\frac{1}{2}×(-\frac{4}{5})+\frac{\sqrt{3}}{2}×\frac{3}{5}$=$\frac{3\sqrt{3}-4}{10}$.
點評 本題主要考查了同角三角函數(shù)關(guān)系式,二倍角的正弦函數(shù)公式,兩角差的余弦函數(shù)公式的應(yīng)用,考查了三角函數(shù)求值,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2+6x+8<0 | B. | x2+y2+6x+8>0 | C. | x2+y2+4x+3<0 | D. | x2+y2+4x+3>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\sqrt{2}$ | C. | $\sqrt{6}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com