【題目】正項(xiàng)等差數(shù)列{an}滿足a1=4,且a2,a4+2,2a7-8成等比數(shù)列,{an}的前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令,求數(shù)列{bn}的前n項(xiàng)和Tn.
【答案】(1);(2)
【解析】試題分析:(1)根據(jù)等比數(shù)列性質(zhì)得關(guān)于公差d的方程,解得d=2,再代入等差數(shù)列通項(xiàng)公式即得(2)先求等差數(shù)列前n項(xiàng)和,再利用裂項(xiàng)相消法求數(shù)列{bn}的前n項(xiàng)和Tn.
試題解析:(1)設(shè)數(shù)列{an}的公差為d(d>0),
由已知得a2(2a7-8)=(a4+2)2,
化簡(jiǎn)得d2+4d-12=0,解得d=2或d=-6(舍).
所以an=a1+(n-1)d=2n+2.
(2)因?yàn)?/span>Sn===n2+3n,
所以bn====-,
所以Tn=b1+b2+b3+…+bn
=(-)+(-)+(-)+…+(-)
=-=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為, 直線過點(diǎn).
(Ⅰ)若點(diǎn)到直線的距離為, 求直線的斜率;
(Ⅱ)設(shè)為拋物線上兩點(diǎn), 且不與軸垂直, 若線段的垂直平分線恰過點(diǎn), 求證: 線段中點(diǎn)的橫坐標(biāo)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市擬招商引資興建一化工園區(qū),新聞媒體對(duì)此進(jìn)行了問卷調(diào)查,在所有參與調(diào)查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如表所示:
支持 | 保留 | 不支持 | |
30歲以下 | 900 | 120 | 280 |
30歲以上(含30歲) | 300 | 260 | 140 |
(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取部分市民做進(jìn)一步調(diào)研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在30歲以上的人有多少人被抽。
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進(jìn)一步的調(diào)研,將此6人看作一個(gè)總體,在這6人中任意選取2人,求至少有1人在30歲以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐A-BCDE中,側(cè)棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC=2DE=4,H,I分別是AD,AE的中點(diǎn).
(Ⅰ)在AB上求作一點(diǎn)F,BC上求作一點(diǎn)G,使得平面FGI∥平面ACD;
(Ⅱ)求平面CHI將四棱錐A-BCDE分成的兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機(jī)抽取100位員工進(jìn)行調(diào)查,得到如下的頻率分布直方圖:
(1)試由此圖估計(jì)該公司員工的月平均工資;
(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認(rèn)為,工資低于4500。元的員工屬于學(xué)徒階段,沒有營銷經(jīng)驗(yàn),若進(jìn)行營銷將會(huì)失敗;高于4500元的員工是具備營銷成熟員工,基進(jìn)行營銷將會(huì)成功,F(xiàn)將該樣本按照“學(xué)徒階段工資”、“成熟員工工資”分成兩層,進(jìn)行分層抽樣,從中抽出5人,在這5人中任選2人進(jìn)行營銷活動(dòng);顒(dòng)中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元。試問在此次比賽中公司收入多少萬元的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln x+ax-+b.
(1)若函數(shù)g(x)=f(x)+為減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若f(x)≤0恒成立,證明:a≤1-b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 且.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),試判斷函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共12分)
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=.
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=2,E在DC邊上,且DE=1,將△ADE沿AE折到△AD′E的位置,使得平面AD′E⊥平面ABCE.
(1)求證:AE⊥BD′;
(2)求三棱錐A-BCD′的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com