若實數(shù)x,y滿足不等式組
x-y+5≥0
x+y≥0
x≤3
,則z=2x-4y的最小值是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:根據(jù)已知的約束條件
x-y+5≥0
x+y≥0
x≤3
畫出滿足約束條件的可行域,再用角點(diǎn)法,求出目標(biāo)函數(shù)的最大值.
解答: 解:約束條件
x-y+5≥0
x+y≥0
x≤3
對應(yīng)的平面區(qū)域如下圖示:
當(dāng)直線z=2x-4y過
x-y+5=0
x=3
的交點(diǎn)A(3,8)時,z取得最小值-26.
故答案為:-26.
點(diǎn)評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點(diǎn)的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E是AA1的中點(diǎn).
(Ⅰ)求證:A1C∥平面BDE;
(Ⅱ)求證:平面A1AC⊥平面BDE;
(Ⅲ)求直線BE與平面A1AC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差為d的等差數(shù)列,a1=1,如果a2•a3<a5,那么d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按邊對三角形進(jìn)行分類的結(jié)構(gòu)圖,則①處應(yīng)填入
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

盒中有7個形狀大小完全相同的小球,其中2個球的標(biāo)號是不同的偶數(shù),其余球的標(biāo)號是不同的奇數(shù),現(xiàn)從中任取3個球,隨機(jī)變量ξ=1表示取出的這3個球的標(biāo)號之和是奇數(shù),ξ=2表示取出的這3個球的標(biāo)號之和是偶數(shù),則隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從{1,2,3,4,5}中隨機(jī)選取一個數(shù)為a,從{2,4,6}中隨機(jī)選取一個數(shù)為b,則b>a的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1+2i
1-2i
=a+bi(a,b∈R,i是虛數(shù)單位),則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c、分別為角A、B、C所對的邊,2sinA=sinB+sinC,給出下列結(jié)論:
 ①由已知條件,這個三角形被唯一確定;
 ②2a=b+c;
 ③若a+b=4c,則角B等于120°;
 ④在③的條件下,若c=3,則△ABC的面積是
15
3
4

其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足
z
1+2i
=1-2i,則z=(  )
A、-5B、5C、-3D、3

查看答案和解析>>

同步練習(xí)冊答案