已知M(a,b)(ab≠0)是圓O:x2+y2=r2內(nèi)一點,現(xiàn)有以M為中點的弦所在直線m和直線l:ax+by=r2,則


  1. A.
    m∥l,且l與圓相交
  2. B.
    l⊥m,且l與圓相交
  3. C.
    m∥l,且l與圓相離
  4. D.
    l⊥m,且l與圓相離
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n.若對于任意的a∈A,總有-a∉A,則稱集合A具有性質(zhì)P.
(Ⅰ)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;
(Ⅱ)對任何具有性質(zhì)P的集合A,證明:n≤
k(k-1)2
;
(Ⅲ)判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(cosωx+sinωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx),其中ω>0.設(shè)函數(shù)f(x)=
m
n
,且函數(shù)f(x)的周期為π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,且a,b,c成等差數(shù)列,當(dāng)f(B)=1時,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知集合A=數(shù)學(xué)公式,B={x|(x-1+m)(x-1-m)<0}.
(1)當(dāng)m=2時,求A∩B;
(2)求使B⊆A的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京高考真題 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A},其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n,若對于任意的a∈A,總有-aA,則稱集合A具有性質(zhì)P。
(1)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;
(2)對任何具有性質(zhì)P的集合A,證明: n≤
(3)判斷m和n的大小關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:月考題 題型:解答題

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n.若對于任意的a∈A,總有﹣aA,則稱集合A具有性質(zhì)P.
(I)檢驗集合{0,1,2,3}與{﹣1,2,3}是否具有性質(zhì)P并對其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;
(II)對任何具有性質(zhì)P的集合A,證明: ;
(III)判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案