【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.

1)求的值;

(2)若對(duì)于任意的, 恒成立,求的取值范圍;

(3)求證:

【答案】)詳見解析

【解析】試題分析:)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義列方程,解方程可得的值;()不等式恒成立問題,一般轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,本題去分母轉(zhuǎn)化為差函數(shù): ,因?yàn)?/span>,所以最大值不小于,根據(jù)導(dǎo)函數(shù)符號(hào)可得才滿足條件.)不等式證明中涉及求和問題,一般方法為適當(dāng)放縮,再利用裂項(xiàng)相消法給予證明.本題由()知,當(dāng)時(shí), 時(shí), 成立,所以放縮這一難點(diǎn)已暗示,下面只需令,即,最后疊加可得證.

試題解析:

由題設(shè) .

,, ,即

設(shè),即.

, ,這與題設(shè)矛盾

當(dāng), 單調(diào)遞增, ,與題設(shè)矛盾.

當(dāng), 單調(diào)遞減, ,即不等式成立

綜上所述, .

)由()知,當(dāng)時(shí), 時(shí), 成立.

不妨令所以,

…………

累加可得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知6只小白鼠有1只被病毒感染,需要通過對(duì)其化驗(yàn)病毒來(lái)確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).

(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.

(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要體驗(yàn)費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列對(duì)應(yīng)是否為集合A到集合B的函數(shù).

(1)AR,B{x|x>0},fxy|x|

(2)AZ,BZfxyx2;

(3)AZ,BZfxy;

(4)A{x|1x1}B{0},fxy0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,是以為底的等腰三角形.

)證明:

)若四棱錐的體積等于.問:是否存在過點(diǎn)的平面分別交,于點(diǎn),使得平面平面?若存在,求出的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD平面CDE,H是BE的中點(diǎn),G是AE,DF的交點(diǎn)

(1)求證:GH平面CDE;

(2)求證:面ADEF面ABCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家劉徽是公元三世紀(jì)世界上最杰出的數(shù)學(xué)家,他在《九章算術(shù)圓田術(shù)》注中,用割圓術(shù)證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法.所謂“割圓術(shù)”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的周長(zhǎng)無(wú)限接近圓的周長(zhǎng),進(jìn)而來(lái)求得較為精確的圓周率(圓周率指圓周長(zhǎng)與該圓直徑的比率).劉徽計(jì)算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長(zhǎng)均為圓的半徑

,此時(shí)圓內(nèi)接正六邊形的周長(zhǎng)為

,此時(shí)若將圓內(nèi)接正六邊形的周長(zhǎng)等同于圓的周長(zhǎng),可得圓周率為3,當(dāng)用正二十四邊形內(nèi)接于圓時(shí),按照上述算法,可得圓周率為__________.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知曲線,將曲線上所有點(diǎn)橫坐標(biāo),縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的倍和倍后,得到曲線

(1)試寫出曲線的參數(shù)方程;

(2)在曲線上求點(diǎn),使得點(diǎn)到直線的距離最大,并求距離最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)吃粽子是我國(guó)的傳統(tǒng)習(xí)俗.設(shè)一盤中裝有10個(gè)粽子,其中豆沙粽2個(gè),肉粽3個(gè),白粽5個(gè),這三種粽子的外觀完全相同.從中任意選取3個(gè).

(1)求三種粽子各取到1個(gè)的概率;

(2)設(shè)X表示取到的豆沙粽個(gè)數(shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案