函數(shù)f(x)=x2+mx+13的圖象關(guān)于直線x=1對(duì)稱的充要條件是   
【答案】分析:根據(jù)題意,函數(shù)f(x)=x2+mx+13的圖象關(guān)于直線x=1對(duì)稱即對(duì)稱軸方程與x=1相等,解即可得到答案.
解答:解;∵f(x)=x2+mx+13為二次函數(shù),其圖象關(guān)于對(duì)稱軸對(duì)稱,
∴x=-=1 即m=-2
故答案為m=-2.
點(diǎn)評(píng):本題考查二次函數(shù)圖象的對(duì)稱性,是基礎(chǔ)題.二次函數(shù)是在中學(xué)階段研究最透徹的函數(shù)之一,二次函數(shù)的圖象是拋物線,在解題時(shí)要會(huì)根據(jù)二次函數(shù)的圖象分析問題,如二次函數(shù)的對(duì)稱軸方程,頂點(diǎn)坐標(biāo)等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+4+2lnx
(I)當(dāng)a=5時(shí),求f(x)的單調(diào)遞減函數(shù);
(Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時(shí)切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點(diǎn)P(0,-3).
(1)求過點(diǎn)P且與曲線C相切的直線的斜率;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2+2x,x∈(0,3]的值域?yàn)?!--BA-->
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+
12
x
+lnx的導(dǎo)函數(shù)為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案