函數(shù)f(x)=-x2+2x,x∈(0,3]的值域?yàn)?!--BA-->
[-3,1]
[-3,1]
分析:先對(duì)已知二次函數(shù)進(jìn)行配方,然后利用二次函數(shù)在x∈[0,3]的性質(zhì)即可求得答案.
解答:解;∵f(x)=-x2+2x=-(x-1)2+1,對(duì)稱軸x=1
∴函數(shù)在x∈[0,3]時(shí),f(x)max=f(1)=1,
又f(x)在[0,1]上遞增,在[1,3]遞減,
f(0)=3,f(3)=-3,f(0)>f(3),
∴函數(shù)在x∈[0,3]時(shí),f(x)min=-3
∴該函數(shù)的值域?yàn)閇-3,1].
故答案為:[-3,1].
點(diǎn)評(píng):本題考查二次函數(shù)的性質(zhì),著重考查二次函數(shù)的單調(diào)性與最值,考查分析解決問題的能力
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+4+2lnx
(I)當(dāng)a=5時(shí),求f(x)的單調(diào)遞減函數(shù);
(Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時(shí)切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點(diǎn)P(0,-3).
(1)求過點(diǎn)P且與曲線C相切的直線的斜率;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+
12
x
+lnx的導(dǎo)函數(shù)為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習(xí)冊答案