【題目】已知圓錐曲線的方程為.
()在所給坐標系中畫出圓錐曲線.
()圓錐曲線的離心率__________.
()如果頂點在原點的拋物線與圓錐曲線有一個公共焦點,且過第一象限,則
(i)交點的坐標為__________.
(ii)拋物線的方程為__________.
(iii)在圖中畫出拋物線的準線.
()已知矩形各頂點都在圓錐曲線上,則矩形面積的最大值為__________.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,, 分別為的中點,點在線段上.
(Ⅰ)求證:平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是直角梯形,,,,,又,,,直線與直線所成的角為.
(1)求證:平面平面;
(2)(文科)求三棱錐的體積.
(理科)求二面角平面角正切值的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.點E是CD邊的中點,點F,G分別在線段AB,BC上,且AF=2FB,CG=2GB.
(1)證明:PE⊥FG;
(2)求二面角PADC的正切值;
(3)求直線PA與直線FG所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線
(1)若直線與圓相交于兩點,弦長等于,求的值;
(2)已知點,點為圓心,若在直線上存在定點(異于點),滿足:對于圓上任一點,都有為一常數(shù),試求所有滿足條件的點的坐標及改常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量(小時)都在30小時以上,其中不足50小時的周數(shù)有5周,不低于50小時且不超過70小時的周數(shù)有35周,超過70小時的周數(shù)有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對應數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合與的關系?請計算相關系數(shù)并加以說明(精確到0.01).(若,則線性相關程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關系:
周光照量(單位:小時) | |||
光照控制儀最多可運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.若商家安裝了3臺光照控制儀,求商家在過去50周周總利潤的平均值.
附:相關系數(shù)公式,參考數(shù)據(jù),.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為 1, 為的中點, 為線段上的動點,過點A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).
①當時, 為四邊形;②當時, 為等腰梯形;③當時, 為六邊形;④當時, 的面積為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com