【題目】某基地蔬菜大棚采用水培、無(wú)土栽培方式種植各類蔬菜.過(guò)去50周的資料顯示,該地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的周數(shù)有5周,不低于50小時(shí)且不超過(guò)70小時(shí)的周數(shù)有35周,超過(guò)70小時(shí)的周數(shù)有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合與的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:
周光照量(單位:小時(shí)) | |||
光照控制儀最多可運(yùn)行臺(tái)數(shù) | 3 | 2 | 1 |
若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元.若商家安裝了3臺(tái)光照控制儀,求商家在過(guò)去50周周總利潤(rùn)的平均值.
附:相關(guān)系數(shù)公式,參考數(shù)據(jù),.
【答案】(1)見(jiàn)解析.(2)商家在過(guò)去50周周總利潤(rùn)的平均值為4600元.
【解析】分析:(1)由題中所給的數(shù)據(jù)求得線性回歸方程,然后進(jìn)行預(yù)測(cè)即可;
(2)由題意分類討論X的范圍,求解即可.
詳解:(1)由已知數(shù)據(jù)可得,.
因?yàn)?/span>
所以相關(guān)系數(shù).
因?yàn)?/span>,所以可用線性回歸模型擬合與的關(guān)系.
(2)記商家周總利潤(rùn)為元,由條件可得在過(guò)去50周里:
當(dāng)時(shí),共有10周,此時(shí)只有1臺(tái)光照控制儀運(yùn)行,周總利潤(rùn)=1×3000-2×1000=1000元
當(dāng)時(shí),共有35周,此時(shí)2臺(tái)光照控制儀運(yùn)行,周總利潤(rùn)=2×3000-1×1000=5000元.
當(dāng)時(shí),共有5周,此時(shí)3臺(tái)光照控制儀都運(yùn)行,周總利潤(rùn)=3×3000=9000元.
所以過(guò)去50周周總利潤(rùn)的平均值元,
所以商家在過(guò)去50周周總利潤(rùn)的平均值為4600元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC, VAB為等邊三角形,ACBC且AC=BC=,O,M分別為AB,VA的中點(diǎn)。
(I)求證:VB//平面MOC;
(II)求證:平面MOC平面VAB;
(III)求三棱錐V-ABC的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐曲線的方程為.
()在所給坐標(biāo)系中畫(huà)出圓錐曲線.
()圓錐曲線的離心率__________.
()如果頂點(diǎn)在原點(diǎn)的拋物線與圓錐曲線有一個(gè)公共焦點(diǎn),且過(guò)第一象限,則
(i)交點(diǎn)的坐標(biāo)為__________.
(ii)拋物線的方程為__________.
(iii)在圖中畫(huà)出拋物線的準(zhǔn)線.
()已知矩形各頂點(diǎn)都在圓錐曲線上,則矩形面積的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓心為,定點(diǎn), 為圓上一點(diǎn),線段上一點(diǎn)滿足,直線上一點(diǎn),滿足.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)為坐標(biāo)原點(diǎn), 是以為直徑的圓,直線與相切,并與軌跡交于不同的兩點(diǎn).當(dāng)且滿足時(shí),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點(diǎn).
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線和是異面直線,在平面內(nèi),在平面內(nèi),是平面與平面的交線,則下列結(jié)論正確的是( )
A. 至少與,中的一條相交 B. 與,都不相交
C. 與,都相交 D. 至多與,中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2)已知拋物線上一點(diǎn),過(guò)點(diǎn)作拋物線的兩條弦和,且,判斷直線是否過(guò)定點(diǎn)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)里工人的工資與其生產(chǎn)利潤(rùn)滿足線性相關(guān)關(guān)系,現(xiàn)統(tǒng)計(jì)了100名工人的工資(元)與其生產(chǎn)利潤(rùn)(千元)的數(shù)據(jù),建立了關(guān)于的回歸直線方程為,則下列說(shuō)法正確的是( )
A. 工人甲的生產(chǎn)利潤(rùn)為1000元,則甲的工資為130元
B. 生產(chǎn)利潤(rùn)提高1000元,則預(yù)計(jì)工資約提高80元
C. 生產(chǎn)利潤(rùn)提高1000元,則預(yù)計(jì)工資約提高130元
D. 工人乙的工資為210元,則乙的生產(chǎn)利潤(rùn)為2000元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中, , , , , 是的中點(diǎn), 是與的交點(diǎn),將沿折起到的位置,如圖2.
圖1 圖2
(1)證明: 平面;
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com