【題目】已知橢圓C1(ab0)的離心率為,且短軸長為6.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在斜率為1的直線l,使得l與曲線C相交于A,B兩點,且以AB為直徑的圓恰好經(jīng)過原點?若存在,求出直線l的方程;若不存在,請說明理由.

【答案】1;(2).

【解析】

(1)根據(jù)題意,列出方程組,求得的值,即可求得橢圓的標(biāo)準(zhǔn)方程,得到答案。

(2)設(shè)直線的方程為,聯(lián)立方程組,利用判別式、根與系數(shù)的關(guān)系,以及=0,列出方程求得的值,即可求解。

(1)由題意,橢圓的離心率為,且短軸長為,

所以,解得,

所以橢圓的標(biāo)準(zhǔn)方程為=1.

(2)假設(shè)存在符合題意的直線與橢圓交于兩點,其方程為

,消去,化簡得,

∵直線與橢圓交于兩點,∴,

化簡得,∴,,

∵以線段為直徑的圓恰到恰好經(jīng)過原點,∴=0,∴,

,

,

解得,滿足,

,

故符合題意的直線l存在,方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過定點,且在軸上截得的弦長為,記動圓圓心的軌跡為曲線.

(1)求直線與曲線圍成的區(qū)域面積;

(2)點在直線上,點,過點作曲線的切線、,切點分別為、,證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機抽取了七位醫(yī)護人員的關(guān)愛患者考核分?jǐn)?shù)(患者考核:10分制),用相關(guān)的特征量表示;醫(yī)護專業(yè)知識考核分?jǐn)?shù)(試卷考試:100分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:

(Ⅰ)求關(guān)于的線性回歸方程(計算結(jié)果精確到0.01);

(Ⅱ)利用(I)中的線性回歸方程,分析醫(yī)護專業(yè)考核分?jǐn)?shù)的變化對關(guān)愛患者考核分?jǐn)?shù)的影響,并估計某醫(yī)護人員的醫(yī)護專業(yè)知識考核分?jǐn)?shù)為95分時,他的關(guān)愛患者考核分?jǐn)?shù)(精確到0.1);

(Ⅲ)現(xiàn)要從醫(yī)護專業(yè)知識考核分?jǐn)?shù)95分以下的醫(yī)護人員中選派2人參加組建的“九寨溝災(zāi)后醫(yī)護小分隊”培訓(xùn),求這兩人中至少有一人考核分?jǐn)?shù)在90分以下的概率.

附:回歸方程中斜率和截距的最小二乘法估計公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生社團組織活動豐富,學(xué)生會為了解同學(xué)對社團活動的滿意程度,隨機選取了100位同學(xué)進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[4050),[50,60),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個單位長度,再向下平移1個單位,得到函數(shù)的圖像.

1)當(dāng)時,求的值域

2)令,若對任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)解不等式

(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;

3)若函數(shù)其中為奇函數(shù), 為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

已知函數(shù)a為實數(shù)).

(1)當(dāng)時,求函數(shù)的圖像在處的切線方程;

(2)求在區(qū)間上的最小值;

(3)若存在兩個不等實數(shù),使方程成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.若使租賃公司的月收益最大,每輛車的月租金應(yīng)該定為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為,分別是的中點,則過且與平行的平面截正方體所得截面的面積為____________

查看答案和解析>>

同步練習(xí)冊答案