【題目】如圖,在三棱錐D﹣ABC中,O為線段AC上一點,平面ADC⊥平面ABC,且△ADO,△ABO為等腰直角三角形,斜邊AO=4.
(Ⅰ)求證:AC⊥BD;
(Ⅱ)將△BDO繞DO旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的體積.
【答案】(Ⅰ)證明見解析 (Ⅱ)16π
【解析】
(Ⅰ)推導(dǎo)出,取AO中點E,連結(jié)DEBE,,則,從而 AC⊥平面BDE ,即可得證(Ⅱ)由題意將△BDO繞DO旋轉(zhuǎn)一周,所得到的旋轉(zhuǎn)體是以2為底面半徑,2為高的兩公共底面的錐,即可求出旋轉(zhuǎn)體的體積.
(Ⅰ)證明:∵△ADO,△ABO為等腰直角三角形,斜邊AO=4.
∴DO⊥AD,BO⊥AB,AD=DO=AB=BO=4,
取AO中點E,連結(jié)DEBE,如圖,
則DE⊥AC,BE⊥AC,且DE∩BE=E,
∴AC⊥平面BDE,
又BD平面BDE,∴AC⊥BD.
(Ⅱ)由(Ⅰ)知DE⊥AC,
∵平面ADC⊥平面ABC,且平面ADC∩平面ABC=AC,
∴DE⊥平面ABC,∴△BDE是直角三角形,
∵△ADO,△ABO是直角三角形,斜邊AO=4,
∴BO=DO=4,DE=2,BE=2,
∴將△BDO繞DO旋轉(zhuǎn)一周,所得到的旋轉(zhuǎn)體是以2為底面半徑,2為高的兩公共底面的錐,
∴將△BDO繞DO旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為:16π.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,其左右頂點分別為,,上下頂點分別為,.圓是以線段為直徑的圓.
(1)求圓的方程;
(2)若點,是橢圓上關(guān)于軸對稱的兩個不同的點,直線,分別交軸于點,求證:為定值;
(3)若點是橢圓Γ上不同于點的點,直線與圓的另一個交點為.是否存在點,使得?若存在,求出點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、是關(guān)于的方程的兩個不相等的實數(shù)根,那么過兩點、的直線與圓的位置關(guān)系是( )
A.相離B.相切C.相交D.隨的變化而變化
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中a為常數(shù),設(shè)e為自然對數(shù)的底數(shù).
(1)當(dāng)時,求過切點為的切線方程;
(2)若在區(qū)間上的最大值為,求a的值;
(3)若不等式恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左右焦點分別為,,點在橢圓上,且.
(1)求橢圓的方程;
(2)點P,Q在橢圓上,O為坐標(biāo)原點,且直線,的斜率之積為,求證:為定值;
(3)直線l過點且與橢圓交于A,B兩點,問在x軸上是否存在定點M,使得為常數(shù)?若存在,求出點M坐標(biāo)以及此常數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù),有下述命題:①若是奇函數(shù),則的圖象關(guān)于點對稱;②函數(shù)的圖象關(guān)于直線對稱,則為偶函數(shù);③若對,有,則2是的一個周期;④函數(shù)與的圖象關(guān)于直線對稱.其中正確的命題是______.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為元件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);
(2)促銷費用投入多少萬元時,該公司的利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com