精英家教網 > 高中數學 > 題目詳情
已知2x1+1,2x2+1,2x3+1,…,2xn+1的方差是3,則x1,x2,x3,…,xn的標準差為   
【答案】分析:已知2x1+1,2x2+1,2x3+1,…,2xn+1的方差是3,根據方差的計算公式即可求得數據x1,x2,x3,…,xn的方差,從而得出標準差.
解答:解:設x1,x2,x3,…,xn的方差為s2,則2x1+1,2x2+1,2x3+1,…,2xn+1的方差為4s2=3,則標準差s=
故答案為:
點評:本題主要考查了方差的計算公式,是需要熟記的內容.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
2x
1+2x
+a
是奇函數,則a=
-
1
2
-
1
2
.用符號[x]表示不超過x的最大整數,則函數y=[f(x)]+[f(-x)]的值域是
{0,-1}
{0,-1}

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=lnx-ax2-bx(a,b∈R),g(x)=
2x-2
x+1
-lnx
(I)當a=-1時,f(x)與g(x)在定義域上的單調性相反,求b的取值范圍;
(II)設x1,x2是函數y=f(x)的兩個零點,且x1<x2求證
2
x1+x2
<a(x1+x2)+b.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數g(x)=
1-2x1+2x
.判斷并證明函數g(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界.如果對于函數f(x)的所有上界中有一個最小的上界,就稱其為函數f(x)的上確界.已知函數f(x)=1+a•(
1
2
)x+(
1
4
)x
,g(x)=
1-m•2x
1+m•2x

(1)當a=1時,求函數f(x)在(-∞,0)上的值域,并判斷函數f(x)在(-∞,0)上是否為有界函數,請說明理由;
(2)若函數f(x)在[0,+∞)上是以3為上界的有界函數,求實數a的取值范圍;
(3)若m>0,求函數g(x)在[0,1]上的上確界T(m).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)=
b-2x1+2x
是奇函數
(1)求b的值;
(2)試討論函數f(x)的單調性;
(3)若對?t∈R,不等式f(t-t2)+f(t-k)>0恒成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案