【題目】已知函數(shù),有下列四個(gè)命題:

①函數(shù)是奇函數(shù);

②函數(shù)是單調(diào)函數(shù);

③當(dāng)時(shí),函數(shù)恒成立;

④當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn),

其中正確的是____________

【答案】③④

【解析】

①根據(jù)的關(guān)系即可判斷;②當(dāng)時(shí),,對(duì)求導(dǎo)可得,設(shè),顯然連續(xù),利用零點(diǎn)存在性定理可得存在,使得,即可判斷時(shí)的單調(diào)性,進(jìn)而判斷②;由②可知當(dāng)時(shí),的最小值,判斷是否成立即可判斷③;利用零點(diǎn)存在性定理即可判斷④.

由題,的定義域?yàn)?/span>,

,,所以不是奇函數(shù),故①錯(cuò)誤;

,當(dāng)時(shí),,

,

,,,

所以存在,使得,

所以當(dāng)時(shí),,是單調(diào)減函數(shù);

當(dāng)時(shí),,是單調(diào)增函數(shù),

所以②錯(cuò)誤;

③由②可知,當(dāng)時(shí),上有最小值,,

所以,

因?yàn)?/span>,

,,,

所以,

所以當(dāng)時(shí),恒成立,故③正確;

④當(dāng)時(shí),,,,

所以內(nèi)有一個(gè)零點(diǎn),故④正確.

故答案為:③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)若,解不等式;

(Ⅱ)當(dāng)時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].從樣本成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,記這2人成績(jī)?cè)?0分以上(含90分)的人數(shù)為ξ,則ξ的數(shù)學(xué)期望為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市旅游管理部門為提升該市26個(gè)旅游景點(diǎn)的服務(wù)質(zhì)量,對(duì)該市26個(gè)旅游景點(diǎn)的交通、安全、環(huán)保、衛(wèi)生、管理五項(xiàng)指標(biāo)進(jìn)行評(píng)分,每項(xiàng)評(píng)分最低分0分,最高分100分,每個(gè)景點(diǎn)總分為這五項(xiàng)得分之和,根據(jù)考核評(píng)分結(jié)果,繪制交通得分與安全得分散點(diǎn)圖、交通得分與景點(diǎn)總分散點(diǎn)圖如下:

請(qǐng)根據(jù)圖中所提供的信息,完成下列問題:

I)若從交通得分前6名的景點(diǎn)中任取2個(gè),求其安全得分都大于90分的概率;

II)若從景點(diǎn)總分排名前6名的景點(diǎn)中任取3個(gè),記安全得分不大于90分的景點(diǎn)個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

III)記該市26個(gè)景點(diǎn)的交通平均得分為安全平均得分為,寫出的大小關(guān)系?(只寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,為等邊三角形,四邊形為矩形,的中點(diǎn),.

證明:平面平面.

設(shè)二面角的大小為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色其面積稱為朱實(shí),黃實(shí),利朱用2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+股2=弦2,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A.886B.500C.300D.134

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,四邊形是菱形,點(diǎn)在線段.

1)證明:平面平面;

2)若,二面角的余弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周髀算經(jīng)》是我國(guó)古老的天文學(xué)和數(shù)學(xué)著作,其書中記載:一年有二十四個(gè)節(jié)氣,每個(gè)節(jié)氣晷長(zhǎng)損益相同(晷是按照日影測(cè)定時(shí)刻的儀器,晷長(zhǎng)即為所測(cè)影子的長(zhǎng)度),夏至、小暑、大暑、立秋、處暑、白露、秋分、寒露、霜降是連續(xù)的九個(gè)節(jié)氣,其晷長(zhǎng)依次成等差數(shù)列,經(jīng)記錄測(cè)算,這九個(gè)節(jié)氣的所有晷長(zhǎng)之和為49.5尺,夏至、大暑、處暑三個(gè)節(jié)氣晷長(zhǎng)之和為10.5尺,則立秋的晷長(zhǎng)為(

A.1.5B.2.5C.3.5D.4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C1a0b0)的焦點(diǎn)分別為F1(﹣5,0),F25,0),PC上一點(diǎn),PF1PF2,tanPF1F2,則C的方程為(

A.x21B.y21

C.1D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案