【題目】已知(且)是R上的奇函數(shù),且.
(1)求的解析式;
(2)若關(guān)于x的方程在區(qū)間內(nèi)只有一個(gè)解,求m的取值集合;
(3)設(shè),記,是否存在正整數(shù)n,使不得式對(duì)一切均成立?若存在,求出所有n的值,若不存在,說明理由.
【答案】(1);
(2)m的取值集合或}
(3)存在,
【解析】
(1)利用奇函數(shù)的性質(zhì)得到關(guān)于實(shí)數(shù)k的方程,解方程即可,注意驗(yàn)證所得的結(jié)果;
(2)結(jié)合函數(shù)的單調(diào)性和函數(shù)的奇偶性脫去f的符號(hào)即可;
(3)可得,即可得:
即可.
(1)由奇函數(shù)的性質(zhì)可得:
,解方程可得:.
此時(shí),滿足,即為奇函數(shù).
的解析式為:;
(2)函數(shù)的解析式為:,
結(jié)合指數(shù)函數(shù)的性質(zhì)可得:在區(qū)間內(nèi)只有一個(gè)解.
即:在區(qū)間內(nèi)只有一個(gè)解.
(i)當(dāng)時(shí),,符合題意.
(ii)當(dāng)時(shí),
只需且
時(shí),,此時(shí),符合題意
綜上,m的取值集合或}
(3)函數(shù)為奇函數(shù)
關(guān)于對(duì)稱
又
當(dāng)且僅當(dāng)時(shí)等號(hào)成立
所以存在正整數(shù)n,使不得式對(duì)一切均成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的極值;
(2)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè),若函數(shù)存在兩個(gè)零點(diǎn),且滿足,問:函數(shù)在處的切線能否平行于軸?若能,求出該切線方程,若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)分別為和,雙曲線的一條切線與軸交于,且斜率為2.
(1)求雙曲線的方程;
(2)若切線與雙曲線的切點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asinA=(2b-c)sinB+(2c-b)sinC..
(1)求角A的大;
(2)若sinB+sinC=,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于隨機(jī)變量及分布的說法正確的是( )
A.拋擲均勻硬幣一次,出現(xiàn)正面的次數(shù)是隨機(jī)變量
B.某人射擊時(shí)命中的概率為0.5,此人射擊三次命中的次數(shù)服從兩點(diǎn)分布
C.離散型隨機(jī)變量的分布列中,隨機(jī)變量取各個(gè)值的概率之和可以小于1
D.離散型隨機(jī)變量的各個(gè)可能值表示的事件是彼此互斥的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在工業(yè)生產(chǎn)中,對(duì)一正三角形薄鋼板(厚度不計(jì))進(jìn)行裁剪可以得到一種梯形鋼板零件,現(xiàn)有一邊長(zhǎng)為3(單位:米)的正三角形鋼板(如圖),沿平行于邊的直線將剪去,得到所需的梯形鋼材,記這個(gè)梯形鋼板的周長(zhǎng)為 (單位:米),面積為(單位:平方米).
(1)求梯形的面積關(guān)于它的周長(zhǎng)的函數(shù)關(guān)系式;
(2)若在生產(chǎn)中,梯形的面積與周長(zhǎng)之比(即)達(dá)到最大值時(shí),零件才能符合使用要求,試確定這個(gè)梯形的周長(zhǎng)為多時(shí),該零件才可以在生產(chǎn)中使用?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一艘輪船在航行中燃料費(fèi)和它的速度的立方成正比.已知速度為每小時(shí)10千米時(shí),燃料費(fèi)是每小時(shí)6元,而其他與速度無關(guān)的費(fèi)用是每小時(shí)96元,問輪船的速度是多少時(shí),航行1千米所需的費(fèi)用總和最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,,,,E為AD中點(diǎn),點(diǎn)O,F分別為BE,DE的中點(diǎn),將沿BE折起到的位置,使得平面平面BCDE(如圖).
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)側(cè)棱上是否存在點(diǎn)P,使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com