【題目】已知函數(shù)
(1)若在上恒成立,求a的取值范圍;
(2)求在[-2,2]上的最大值M(a).
【答案】(1);(2).
【解析】分析:(1)先根據(jù)絕對值定義去掉絕對值,并分離變量得當x>1時,;當x<1時,,當x=1時,a∈R;再根據(jù)函數(shù)最值得a的取值范圍;(2)先根據(jù)圖像得函數(shù)最大值只能在f(1),f(2),f(-2)三處取得,再根據(jù)三者大小關(guān)系以及對應對稱軸確定最大值取法,最后用分段函數(shù)書寫.
詳解:(1)即(*)對x∈R恒成立,
①當x=1時,(*)顯然成立,此時a∈R;當x≠1時,(*)可變形為,
令
②當x>1時,,③當x<1時,,所以,故此時.
綜合①②③,得所求實數(shù)a的取值范圍是.
(2)得:f(1)=0,f(2)=3-a,f(-2)=3-3a
①當時,∵,,∴,;
②當時,∴,,即
③當時,∵,,∴,
即所以
科目:高中數(shù)學 來源: 題型:
【題目】隨著國民生活水平的提高,利用長假旅游的人越來越多,其公司統(tǒng)計了2012到2016年五年間本公司職工每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計數(shù)據(jù)如表所示:
年份x | 2012 | 2013 | 2014 | 2015 | 2016 |
家庭數(shù)y | 6 | 10 | 16 | 22 | 26 |
(1)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程y=bx+a,判斷它們之間是否是正相關(guān)還是負相關(guān);
(2)根據(jù)所求的直線方程估計該公司2019年春節(jié)期間外出的旅游的家庭數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有1個零點,求實數(shù)的取值范圍;
(3)是否存在正整數(shù),使得在上恒成立?若存在,求出k的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過雙曲線 =1(a>0,b>0)的右焦點F作一條直線,當直線斜率為l時,直線與雙曲線左、右兩支各有一個交點;當直線斜率為3時,直線與雙曲線右支有兩個不同的交點,則雙曲線離心率的取值范圍為( )
A.(1, )
B.(1, )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=exsinx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果對于任意的 ,f(x)≥kx恒成立,求實數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+excosx, ,過點 作函數(shù)F(x)的圖象的所有切線,令各切點的橫坐標按從小到大構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項之和的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點和直線:,設(shè)圓的半徑為1,圓心在直線上.
(Ⅰ)若圓心也在直線上,過點作圓的切線.
(1)求圓的方程;(2)求切線的方程;
(Ⅱ)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)據(jù)顯示,某公司2018年上半年五個月的收入情況如下表所示:
月份 | 2 | 3 | 4 | 5 | 6 |
月收入(萬元) | 1.4 | 2.56 | 5.31 | 11 | 21.3 |
根據(jù)上述數(shù)據(jù),在建立該公司2018年月收入(萬元)與月份的函數(shù)模型時,給出兩個函數(shù)模型與供選擇.
(1)你認為哪個函數(shù)模型較好,并簡單說明理由;
(2)試用你認為較好的函數(shù)模型,分析大約從第幾個月份開始,該公司的月收入會超過100萬元?(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以原點O為極點,以x軸非負半軸為極軸建立極坐標系.已知直線l的方程為4ρcosθ﹣ρsinθ﹣25=0,曲線W: (t是參數(shù)).
(1)求直線l的直角坐標方程與曲線W的普通方程;
(2)若點P在直線l上,Q在曲線W上,求|PQ|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com