已知雙曲線的方程為數(shù)學(xué)公式,它的一個頂點到一條漸近線的距離為數(shù)學(xué)公式(c為雙曲線的半焦距長),則雙曲線的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:不妨設(shè)它的一個頂點(a,0)到一條漸近線y=的距離為,由此利用點到直線的距離建立方程,根據(jù)a>b,即可確定雙曲線的離心率.
解答:不妨設(shè)它的一個頂點(a,0)到一條漸近線y=的距離為,


∴2e4-9e2+9=0
∴e2=3或
∵a>b,∴2a2>c2
∴e2<2


故選B.
點評:本題重點考查雙曲線的幾何性質(zhì),考查點到直線距離公式的運用,根據(jù)一個頂點到一條漸近線的距離為,建立方程是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,過左焦點F1作斜率為
3
3
的直線交雙曲線的右支于點P,且y軸平分線段F1P,則雙曲線的離心率是( 。
A、
2
B、
5
+1
C、
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程為16x2-9y2=144.
(1)求雙曲線的焦點坐標(biāo)、離心率和準(zhǔn)線方程;
(2)求以雙曲線的中心為頂點,左頂點為焦點的拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟南三模)已知雙曲線的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),雙曲線的一個焦點到一條漸近線的距離為
5
3
c
(c為雙曲線的半焦距長),則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)二模)已知雙曲線的方程為
x23
-y2=1
,則此雙曲線的焦點到漸近線的距離為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)二模)已知雙曲線的方程為
x2
4
-y2=1
,則其漸近線的方程為
y=±
1
2
x
y=±
1
2
x
,若拋物線y2=2px的焦點與雙曲線的右焦點重合,則p=
2
5
2
5

查看答案和解析>>

同步練習(xí)冊答案