(2013•寶山區(qū)二模)已知雙曲線的方程為
x23
-y2=1
,則此雙曲線的焦點到漸近線的距離為
1
1
分析:先由題中條件求出焦點坐標和漸近線方程,再代入點到直線的距離公式即可求出結(jié)論.
解答:解:由題得:其焦點坐標為(-2,0),(2,0).漸近線方程為y=±
3
3
x,即±
3
y-x=0,
所以焦點到其漸近線的距離d=
3
×0±2|
3+1
=1.
故答案為:1.
點評:本題以雙曲線方程為載體,考查雙曲線的標準方程,考查雙曲線的幾何性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•寶山區(qū)二模)已知a∈(
π
2
,π),sina=
3
5
,則tan(a-
π
4
)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寶山區(qū)二模)已知函數(shù)f(x)=x|x|.當x∈[a,a+1]時,不等式f(x+2a)>4f(x)恒成立,則實數(shù)a的取值范圍是
(1,+∞)
(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寶山區(qū)二模)(文) 若
x≥1
y≥2
x+y≤6
,則目標函數(shù)z=2x+y的最小值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寶山區(qū)二模)已知數(shù)列{an}的前n項和為Sn,且a1=2,nan+1=Sn+
n(n+1)3
.從{an}中抽出部分項ak1ak2,…,akn,…,(k1<k2<…<kn<…)組成的數(shù)列{akn}是等比數(shù)列,設(shè)該等比數(shù)列的公比為q,其中k1=1,n∈N*
(1)求a2的值;
(2)當q取最小時,求{kn}的通項公式;
(3)求k1+k2+…+kn的值.

查看答案和解析>>

同步練習冊答案