【題目】已知拋物線,其焦點(diǎn)為.

1)若點(diǎn),求以為中點(diǎn)的拋物線的弦所在的直線方程;

2若互相垂直的直線都經(jīng)過拋物線的焦點(diǎn),且與拋物線相交于兩點(diǎn)和兩點(diǎn),求四邊形面積的最小值.

【答案】(1);(2).

【解析】

試題分析:(1)用點(diǎn)差法求中點(diǎn)弦所在的直線方程;(2)利用拋物線的定義求拋物線的焦點(diǎn)弦長,表示四邊形的面積,再利用均值不等式求面積的最值.

試題解析:(1)因?yàn)辄c(diǎn)拋物線含焦點(diǎn)的區(qū)域內(nèi),所以中點(diǎn)弦所在的直線存在.設(shè)所求直線交拋物線于,,,, 所求直線方程為: .

依題意知,直線的斜率存在,設(shè)直線的方程為,與拋物線方程聯(lián)立,得

,,整理得,其兩根為, .

由拋物線的定義可知, , 同理,所以四邊形的面積.當(dāng)且僅當(dāng)時(shí)取得最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在甲、乙、丙、丁四個(gè)地區(qū)分別有150個(gè)、120個(gè)、180個(gè)、150個(gè)銷售點(diǎn).公司為了調(diào)查產(chǎn)品銷售的情況,需從這600個(gè)銷售點(diǎn)中抽取一個(gè)容量為100的樣本,記這項(xiàng)調(diào)查為①;在丙地區(qū)有10個(gè)特大型銷售點(diǎn),要從中抽取7個(gè)銷售點(diǎn)調(diào)查其銷售收入和售后服務(wù)等情況,記這項(xiàng)調(diào)查為②,則完成①②這兩項(xiàng)調(diào)查宜采用的抽樣方法分別為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1單位:件.已知每個(gè)工人每天可生產(chǎn)部件6件,或部件3件,或部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)部件的人數(shù)與生產(chǎn)部件的人數(shù)成正比,比例系數(shù)為為正整數(shù)

1設(shè)生產(chǎn)部件的人數(shù)為,分別寫出完成三件部件生產(chǎn)需要的時(shí)間;

2假設(shè)這三種部件的生產(chǎn)同時(shí)開工,試確定正整數(shù)的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.

1將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的,2倍后得到曲線,試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

2在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù),的圖像關(guān)于直線x=對稱,最大值為3,且圖像上相鄰兩個(gè)最高點(diǎn)的距離為

1的最小正周期;

2求函數(shù)的解析式;

3,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體為一簡單組合體在底面,,,,平面,,,

(1)求證:平面平面

(2)求該組合體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程。

在平面直角坐標(biāo)系xOy中,已知曲線,以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線

1將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線,試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

2在曲線上求一點(diǎn)P,使點(diǎn)P到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲兩顆骰子,計(jì)算:

1)事件兩顆骰子點(diǎn)數(shù)相同的概率;

2)事件點(diǎn)數(shù)之和小于7”的概率;

3)事件點(diǎn)數(shù)之和等于或大于11”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)為和Sn,點(diǎn)(n)在直線yx上.?dāng)?shù)列{bn}滿足bn+2-2bn+1bn=0(nN*),且b3=11,前9項(xiàng)和為153.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

(3)設(shè)nN*,fn)=問是否存在mN*,使得fm+15)=5fm)成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案