已知函數(shù),當(dāng)時函數(shù)取得一個極值,其中.
(Ⅰ)求與的關(guān)系式;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時,函數(shù)的圖象上任意一點(diǎn)的切線的斜率恒大于,求的取值范圍.
(1)
(2)當(dāng)時,在上單調(diào)遞減,(8 分)
在上單調(diào)遞增,在上單調(diào)遞減;
(3)
解析試題分析:解:(Ⅰ), ( 1分)
∵ 是函數(shù)的一個極值點(diǎn),
∴ ,即, ( 3分)
則; ( 4分)
(Ⅱ)由(Ⅰ)知
=,
∵ ,
∴ (5 分)
當(dāng)變化時,的變化情況如下表:
由上表知,當(dāng)時,在上單調(diào)遞減,(8 分)1 - 0 + 0 - ↘ 極小值 ↗ 極大值 ↘
在上單調(diào)遞增,在上單調(diào)遞減;
(Ⅲ)由已知得,即, ( 9分)
∵ , ∴ ,
設(shè),其圖象開口向上,
由題意知當(dāng)時,恒成立, ( 11分)
則,即,
解之得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),設(shè)
(1)求的單調(diào)區(qū)間;
(2)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率 恒成立,求實(shí)數(shù)的最小值;
(3)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖象恰好有四個不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,
OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對稱軸交
于M.點(diǎn)P為線段FG上一個動點(diǎn)(與F、G不重合),PQ∥y軸與拋物線交于點(diǎn)Q.
(1)求經(jīng)過B、E、C三點(diǎn)的拋物線的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿足條件
的點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成
為等腰梯形?若能,請直接寫出點(diǎn)P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中.
(1)當(dāng)時,求在曲線上一點(diǎn)處的切線方程;
(2)求函數(shù)的極值點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ad/b/18qxf3.png" style="vertical-align:middle;" />,
的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/27/5/ydkr32.png" style="vertical-align:middle;" />.
(1)求.
(2)記 ,若是的必要不充分條件,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(1+x)2-4a lnx(a∈N﹡).
(Ⅰ)若函數(shù)f(x)在(1,+∞)上是增函數(shù),求a的值;
(Ⅱ)在(Ⅰ)的條件下,若關(guān)于x的方程f(x)=x2-x+b在區(qū)間[1,e]上恰有一個實(shí)根,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)求在點(diǎn)處的切線方程;
(Ⅱ)若存在,滿足成立,求的取值范圍;
(Ⅲ)當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1) 求函數(shù)在上的最小值;
(2) 對一切,恒成立,求實(shí)數(shù)a的取值范圍;
(3) 證明:對一切,都有成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com