已知函數(shù)f(x)=(1+x)2-4a lnx(a∈N﹡).
(Ⅰ)若函數(shù)f(x)在(1,+∞)上是增函數(shù),求a的值;
(Ⅱ)在(Ⅰ)的條件下,若關(guān)于x的方程f(x)=x2-x+b在區(qū)間[1,e]上恰有一個實根,求實數(shù)b的取值范圍.

;⑵為所求.

解析試題分析:⑴由題意,函數(shù)的定義域為
 
恒成立,記
由于函數(shù)上是增函數(shù),故,所以
,所以為所求.                         5分
⑵由題知,整理得
,則
注意到,故函數(shù)上單調(diào)遞減,在上單調(diào)遞增.
知,
所以關(guān)于的方程在區(qū)間上恰有一個實根 時
為所求.
考點:本題考查了導(dǎo)數(shù)的運用
點評:近幾年新課標(biāo)高考對于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點考查函數(shù)單調(diào)性、導(dǎo)數(shù)運算、不等式方程的求解等基本知識,注重數(shù)學(xué)思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運用.把數(shù)學(xué)運算的“力量”與數(shù)學(xué)思維的“技巧”完美結(jié)合

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,函數(shù)的圖象與軸相交于點,且該函數(shù)的最小正周期為

(1)、求的值;
(2)、已知點,點是該函數(shù)圖象上一點,
的中點,當(dāng),時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0有兩個實根為x1="3," x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè),解關(guān)于x的不等式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),當(dāng)時函數(shù)取得一個極值,其中
(Ⅰ)求的關(guān)系式;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時,函數(shù)的圖象上任意一點的切線的斜率恒大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的最小正周期;
(2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若時,取得極值,求實數(shù)的值;   
(2)求上的最小值;
(3)若對任意,直線都不是曲線的切線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求在點處的切線方程;
(2)求在區(qū)間的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f (x)的定義域為M,具有性質(zhì)P:對任意xM,都有f (x)+f (x+2)≤2f (x+1).
(1)若M為實數(shù)集R,是否存在函數(shù)f (x)=ax (a>0且a≠1,x∈R) 具有性質(zhì)P,并說明理由;
(2)若M為自然數(shù)集N,并滿足對任意xM,都有f (x)∈N. 記d(x)=f (x+1)-f (x).
(ⅰ) 求證:對任意xM,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求證:存在整數(shù)0≤cd(1)及無窮多個正整數(shù)n,滿足d(n)=c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的函數(shù)是減函數(shù),且是奇函數(shù),若,求實數(shù)的范圍。

查看答案和解析>>

同步練習(xí)冊答案