已知等比數(shù)列{an},若存在兩項(xiàng)am,an使得am·an=a32,則的最小值為(  )

A. B. C. D.

 

A

【解析】由等比數(shù)列的性質(zhì)知m+n=6,則(m+n)=,當(dāng)且僅當(dāng),即m=2,n=4時(shí)等號(hào)成立.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:選擇題

在棱長(zhǎng)為1的正方體AC1中,E為AB的中點(diǎn),點(diǎn)P為側(cè)面BB1C1C內(nèi)一動(dòng)點(diǎn)(含邊界),若動(dòng)點(diǎn)P始終滿足PE⊥BD1,則動(dòng)點(diǎn)P的軌跡的長(zhǎng)度為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

已知橢圓C的方程為(m>0),如果直線y=x與橢圓的一個(gè)交點(diǎn)M在x軸上的射影恰好是橢圓的右焦點(diǎn)F,則m的值為(  )

A.2 B.2

C.8 D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:填空題

對(duì)大于或等于2的自然數(shù)m的n次方冪有如下分解方式:

22=1+3      23=3+5

32=1+3+5 33=7+9+11

42=1+3+5+7 43=13+15+17+19

52=1+3+5+7+9 53=21+23+25+27+29

根據(jù)上述分解規(guī)律,若m3(m∈N*)的分解中最小的數(shù)是73,則m的值為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

已知平面α⊥平面β,α∩β=l,點(diǎn)A∈α,A∉l,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關(guān)系中,不一定成立的是(  )

A.AB∥m B.AC⊥m

C.AB∥β D.AC⊥β

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:解答題

為備戰(zhàn)2016年奧運(yùn)會(huì),甲、乙兩位射擊選手進(jìn)行了強(qiáng)化訓(xùn)練.現(xiàn)分別從他們的強(qiáng)化訓(xùn)練期間的若干次平均成績(jī)中隨機(jī)抽取8次,記錄如下:

甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3

乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5

(1)畫(huà)出甲、乙兩位選手成績(jī)的莖葉圖;

(2)現(xiàn)要從中選派一人參加奧運(yùn)會(huì)封閉集訓(xùn),從統(tǒng)計(jì)學(xué)角度,你認(rèn)為派哪位選手參加合理?簡(jiǎn)單說(shuō)明理由;

(3)若將頻率視為概率,對(duì)選手乙在今后的三次比賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中不低于8.5分的次數(shù)為ξ,求ξ的分布列及均值E(ξ).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:選擇題

已知函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,若f(x1)=x1<x2,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)為( )

A.3 B.4 C.5 D.6

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:填空題

由直線y=2與函數(shù)y=2cos2(0≤x≤2π)的圖象圍成的封閉圖形的面積為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)變量x,y滿足約束條件,則目標(biāo)函數(shù)的最小值為 。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案