已知函數(shù)f(x)=x3+ax2+bx+c有兩個極值點x1,x2,若f(x1)=x1<x2,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實根個數(shù)為( )
A.3 B.4 C.5 D.6
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:解答題
已知函數(shù)f(x)=ax3+(a-2)x+c的圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)若g(x)=-2ln x在其定義域內(nèi)為增函數(shù),求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:解答題
已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2,數(shù)列{bn}滿足b1=1,且bn+1=bn+2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設cn=an-bn,求數(shù)列{cn}的前2n項和T2n.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
已知等比數(shù)列{an},若存在兩項am,an使得am·an=a32,則+的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:解答題
為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關(guān)系,隨機調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:
休閑方式 性別 | 看電視 | 看書 | 合計 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計 | 20 | 60 | 80 |
(1)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X,求X的分布列和數(shù)學期望;
(2)根據(jù)以上數(shù)據(jù),我們能否在犯錯誤的概率不超過0.01的前提下,認為“在20:00-22:00時間段居民的休閑方式與性別有關(guān)系”?
參考公式:K2=,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題
使n(n∈N+)的展開式中含有常數(shù)項的最小的n為( )
A.4 B.5 C.6 D.7
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:解答題
(2013·佛山模擬)在平面直角坐標系xOy中,以Ox為始邊,角α的終邊與單位圓O的交點B在第一象限,已知A(-1,3).
(1)若OA⊥OB,求tan α的值;
(2)若B點橫坐標為,求S△AOB.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:解答題
已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d).若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com