設(shè){an}是正數(shù)等差數(shù)列,{bn}是正數(shù)等比數(shù)列,且a1=b1,a21=b21,則( 。
分析:根據(jù)等差數(shù)列的基本公式求出a11的表達(dá)式,再結(jié)合題中條件找出a11與b11的關(guān)系即可求出答案得到正確選項(xiàng)
解答:解:由題意可知:a1=b1,a21=b21,
且{an}是由正數(shù)組成的等差數(shù)列,{bn}是由正數(shù)組成的等比數(shù)列,
則a11=
a1+a21
2
a1a21
=
b1b21
=b11
故選D.
點(diǎn)評:本題考查了等差數(shù)列和等比數(shù)列的綜合應(yīng)用,考查了學(xué)生的計(jì)算能力以及對數(shù)列的綜合掌握,解題時(shí)注意轉(zhuǎn)化思想的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,并且對于所有的自然數(shù)n,an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng).
(1)寫出數(shù)列{an}的前3項(xiàng);
(2)求數(shù)列{an}的通項(xiàng)公式(寫出推證過程);
(3)令bn=
1
2
(
an+1
an
+
an
an+1
)(n∈N)
,求
lim
n→∞
(b1+b2+…+bn-n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,并且對所有自然數(shù)n,an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng),寫出此數(shù)列的前三項(xiàng):
 
,
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)的和為Sn,并且對于所有的自然數(shù)n,存在正數(shù)t,使an與t的等差中項(xiàng)等于Sn與t的等比中項(xiàng).
(1)求 {an}的通項(xiàng)公式;
(2)若n=3時(shí),Sn-2t•an取得最小值,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,并且對于所有的n N+,an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng).  

1)寫出數(shù)列{an}的前3項(xiàng).    2) 求數(shù)列{an}的通項(xiàng)公式(寫出推證過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,并且對于所有的自然數(shù)n,an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng).

(1)寫出數(shù)列{an}的前3項(xiàng).

(2)求數(shù)列{an}的通項(xiàng)公式(寫出推證過程).

(3)令bn=(n∈N*),求 (b1+b2+b3+…+bnn).

查看答案和解析>>

同步練習(xí)冊答案