設{an}是正數(shù)組成的數(shù)列,其前n項和為Sn,并且對于所有的自然數(shù)n,an與2的等差中項等于Sn與2的等比中項.
(1)寫出數(shù)列{an}的前3項.
(2)求數(shù)列{an}的通項公式(寫出推證過程).
(3)令bn=(n∈N*),求 (b1+b2+b3+…+bn-n).
(1) 數(shù)列的前3項為2,6,10 ,(2) an=4n-2 ,(3)1
(1)由題意,當n=1時,有,S1=a1,
∴,解得a1=2 當n=2時,有,S2=a1+a2,將a1=2代入,整理得(a2-2)2=16,由a2>0,解得a2=6.
當n=3時,有,S3=a1+a2+a3,
將a1=2,a2=6代入,整理得(a3-2)2=64,由a3>0,解得a3=10.
故該數(shù)列的前3項為2,6,10.
(2)解法一:由(1)猜想數(shù)列{an} 有通項公式an=4n-2.
下面用數(shù)學歸納法證明{an}的通項公式是an=4n-2,(n∈N*).
①當n=1時,因為4×1-2=2,,又在(1)中已求出a1=2,所以上述結(jié)論成立
②假設當n=k時,結(jié)論成立,即有ak=4k-2,由題意,有,將ak=4k-2. 代入上式,解得2k=,得Sk=2k2,
由題意,有,Sk+1=Sk+ak+1,
將Sk=2k2代入得()2=2(ak+1+2k2),
整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k,
所以ak+1=2+4k=4(k+1)-2,
即當n=k+1時,上述結(jié)論成立.
根據(jù)①②,上述結(jié)論對所有的自然數(shù)n∈N*成立.
解法二:由題意知,(n∈N*) 整理得,Sn=(an+2)2,
由此得Sn+1=(an+1+2)2,∴an+1=Sn+1-Sn=[(an+1+2)2-(an+2)2].
整理得(an+1+an)(an+1-an-4)=0,
由題意知an+1+an≠0,∴an+1-an=4,
即數(shù)列{an}為等差數(shù)列,其中a1=2,公差d=4.
∴an=a1+(n-1)d=2+4(n-1),即通項公式為an=4n-2.
解法三:由已知得,(n∈N*) 、伲
所以有 、,
由②式得,
整理得Sn+1-2·+2-Sn=0,
解得,
由于數(shù)列{an}為正項數(shù)列,而,
因而,
即{Sn}是以為首項,以為公差的等差數(shù)列.
所以= +(n-1) =n,Sn=2n2,
故an=即an=4n-2(n∈N*).
(3)令cn=bn-1,則cn=
科目:高中數(shù)學 來源: 題型:
1 |
2 |
an+1 |
an |
an |
an+1 |
lim |
n→∞ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
4 |
an•an+1 |
m |
20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
an+2 |
2 |
2S n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com