【題目】已知橢圓 過(guò)點(diǎn)且離心率.

1)求橢圓的方程;

(2)若直線與橢圓交于不同的兩點(diǎn)且線段的垂直平分線過(guò)定點(diǎn),的取值范圍.

【答案】(1);(2.

【解析】試題分析:(1)由離心率得到a,c,b的關(guān)系,進(jìn)一步把橢圓方程用含有c的代數(shù)式表示,再結(jié)合點(diǎn)在橢圓上求得c,則橢圓方程可求;(2)設(shè)出M,N的坐標(biāo),聯(lián)立直線方程和橢圓方程,由判別式大于0得到,再結(jié)合根與系數(shù)關(guān)系得到MN中點(diǎn)P的坐標(biāo)為.求出MN的垂直平分線l'方程,由P在l'上,得到,再結(jié)合求得k的取值范圍.

試題解析:(1)離心率,1

又橢圓過(guò)點(diǎn),(1式代入上式,解得: , ,橢圓方程為

2)設(shè),的中點(diǎn)

得: ,

直線與橢圓交于不同的兩點(diǎn),

,,(1

由韋達(dá)定理得: , ,

,

直線的斜率為: ,

由直線和直線垂直可得: ,,代入(1)式,

可得: ,,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的不等式ax2﹣|x+1|+3a≥0的解集為(﹣∞,+∞),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,已知a1+a2=2,a2+a3=10,求通項(xiàng)公式an及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知| |=4,| |=2,且 夾角為120°求:
(1)( ﹣2 )( + );
(2) 上的投影;
(3) + 的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)滿足:f(x+3)=﹣ ,且當(dāng)﹣3≤x<﹣1時(shí),f(x)=﹣(x+2)2 , 當(dāng)﹣1≤x<3時(shí),f(x)=x.則f(1)+f(2)+f(3)+…+f(2016)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosλθ,cos(10﹣λ)θ), =(sin(10﹣λ)θ,sinλθ),λ、θ∈R.
(1)求 + 的值;
(2)若 ,求θ;
(3)若θ= ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(x,y)是直線kx+y+4=0(k>0)上一動(dòng)點(diǎn),PA,PB是圓C:x2+y2﹣2y=0的兩條切線,A,B是切點(diǎn),若四邊形PACB的最小面積是2,則k的值為(
A.3
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,圓的極坐標(biāo)方程為,若以極點(diǎn)為原點(diǎn),極軸所在的直線為軸建立平面直角坐標(biāo)系.

(1)求圓的參數(shù)方程;

(2)在直線坐標(biāo)系中,點(diǎn)是圓上的動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1當(dāng),求函數(shù)的單調(diào)區(qū)間;

2當(dāng)時(shí),函數(shù)有唯一零點(diǎn),求正數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案