2.$\frac{2sin20°tan70°-2sin40°}{sin35°}$=$\sqrt{6}-\sqrt{2}$.

分析 根據(jù)“切化弦”的思想,利用和差化積公式公式,可得答案.

解答 解:由$\frac{2sin20°tan70°-2sin40°}{sin35°}$=$\frac{2sin20°×\frac{sin70°}{cos70°}-2sin40°}{sin35°}$=$\frac{2cos20°-2sin40°}{sin35°}$=$\frac{2(sin70°-sin40°)}{sin35°}$=$\frac{2×2(cos\frac{70°+40°}{2})sin(\frac{70°-40°}{2})}{sin35°}$=$\frac{4sin35°sin15°}{sin35°}$=4sin15°=$4×\frac{\sqrt{6}-\sqrt{2}}{4}=\sqrt{6}-\sqrt{2}$.

點(diǎn)評 本題主要考察了“切化弦”的思想,利用到了和差化積公式公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(sinx,-1),$\overrightarrow$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函數(shù)f(x)=($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$-2.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,其中A為銳角,a=$\sqrt{3}$,c=1,且f(A)=1,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分別是BF,CE上的點(diǎn),AD∥BC,且AB=DE=2BC=2AF(如圖1),將四邊形ADEF沿AD折起,連結(jié)BE、BF、CE(如圖2).在折起的過程中,下列結(jié)論錯誤的是④.(填序號)
①AC∥平面BEF;
②B、C、E、F四點(diǎn)不可能共面;
③若EF⊥CF,則平面ADEF⊥平面ABCD;
④直線EF與AC所成角可能為15°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,其中向量$\overrightarrow a$=(2cosx,1),$\overrightarrow b$=(cosx,$\sqrt{3}$sin2x).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)在(-∞,+∞)上有意義,對于給定的正數(shù)k,定義函數(shù)fk(x)=$\left\{\begin{array}{l}{f(x),f(x)<k}\\{k,f(x)≥k}\end{array}\right.$取k=3,f(x)=($\frac{k}{2}$)|x|,則fk(x)=$\frac{k}{2}$的零點(diǎn)有(  )
A.0個B.1個
C.2個D.不確定,隨k的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.月餅是久負(fù)盛名的中國傳統(tǒng)小吃之一,月餅圓又圓,又是合家分吃,象征著團(tuán)圓和睦,在中秋這一天是必食之品.某食品公司在中秋佳節(jié)推出中式月餅,港式月餅,歐式月餅三個系列,該食品公司對其全部42名內(nèi)部員工實(shí)行優(yōu)惠,對中秋節(jié)當(dāng)天員工購買公司“月餅”情況進(jìn)行統(tǒng)計,結(jié)果如下:(所有員工都參加了購買,且只購買一種)
其中購買歐式月餅的40歲以下員工占全部員工的三分之一.
  中式月餅 港式月餅 歐式月餅
 40歲以上(含40歲)員工人數(shù) 10 y 4
 40歲以下員工人數(shù) 2 6 x
(1)求x,y的值;
(2)能否在犯錯誤的概率不超過1%的情況下認(rèn)為員工購買“歐式月餅”與年齡有關(guān)?
(3)已知甲、乙兩位員工購買的是“歐式月餅”,依照購買的三個系列分類,按分層抽樣的方法從員工中隨機(jī)抽取7人,記甲、乙2人中被抽取到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k0)  0.10.01 0.01 
 k0 2.706 6.635 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}中,a1=1,a2=3,且an+2=3an+1-2an,數(shù)列{bn}滿足bn=an+1-an,則$\frac{lg_{n+2}-lg_{n+1}}{lg_{n+1}-lg_{n}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|x2+x-2<0},B={x|2x>1},則A∩(∁UB)=(  )
A.(0,1)B.(-2,0)C.(-2,0]D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為$\frac{π}{3}$,那么$|{\overrightarrow a+3\overrightarrow b}|$等于( 。
A.$\sqrt{7}$B.$\sqrt{10}$C.4D.$\sqrt{13}$

查看答案和解析>>

同步練習(xí)冊答案