12.已知$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為$\frac{π}{3}$,那么$|{\overrightarrow a+3\overrightarrow b}|$等于(  )
A.$\sqrt{7}$B.$\sqrt{10}$C.4D.$\sqrt{13}$

分析 根據(jù)平面向量數(shù)量積的定義計算模長即可.

解答 解:$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為$\frac{π}{3}$,
所以${(\overrightarrow{a}+3\overrightarrow)}^{2}$=${\overrightarrow{a}}^{2}$+6$\overrightarrow{a}$•$\overrightarrow$+9${\overrightarrow}^{2}$=12+6×1×1×cos$\frac{π}{3}$+9×12=13,
那么$|{\overrightarrow a+3\overrightarrow b}|$=$\sqrt{13}$.
故選:D.

點評 本題考查了平面向量數(shù)量積的定義與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.$\frac{2sin20°tan70°-2sin40°}{sin35°}$=$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知-$\frac{π}{2}$<$\frac{α}{2}$<0,sinα=-$\frac{4}{5}$.
(1)求tanα的值;
(2)求cos2α+sin($\frac{π}{2}$-α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,e為雙曲線的離心率,P是雙曲線右支上的點,△PF1F2的內(nèi)切圓的圓心為I,過F2作直線PI的垂線,垂足為B,則OB=a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設$\overrightarrow a=(-3,m),\overrightarrow b=(4,3)$,若$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角,則實數(shù)m的范圍是( 。
A.m>4B.m<4C.m<4且$m≠\frac{9}{4}$D.m<4且$m≠-\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的圖象如圖所示.
(1)根據(jù)圖象寫出f(x)的解析式;
(2)A為銳角三角形的一個內(nèi)角,求f(A)的最大值,及當f(A)取最大值時A的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對應值表:
x1234567
f(x)123.521.5-7.8211.57-53.7-126.7-129.6
那么函數(shù)f(x)在區(qū)間[1,6]上的零點至少有( 。
A.5個B.4個C.3個D.2個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某農(nóng)戶計劃種植黃瓜和冬瓜,種植面積不超過50畝,投入資金不超過54萬元,假設種植黃瓜與冬瓜的產(chǎn)量、成本和售價如表:
年產(chǎn)量/畝年種植成本/畝每噸售價
黃瓜4噸1.2萬元0.55萬元
冬瓜6噸0.9萬元0.3萬元
為使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大,那么黃瓜與冬瓜的種植面積(單位:畝)分別為( 。
A.50,0B.30,20C.20,30D.0,50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=|x2+bx|(b∈R),當x∈[0,1]時,f(x)的最大值為M(b),則M(b)的最小值是( 。
A.3-2$\sqrt{2}$B.4-2$\sqrt{3}$C.1D.5-2$\sqrt{5}$

查看答案和解析>>

同步練習冊答案