10.設(shè)函數(shù)f(x)在(-∞,+∞)上有意義,對(duì)于給定的正數(shù)k,定義函數(shù)fk(x)=$\left\{\begin{array}{l}{f(x),f(x)<k}\\{k,f(x)≥k}\end{array}\right.$取k=3,f(x)=($\frac{k}{2}$)|x|,則fk(x)=$\frac{k}{2}$的零點(diǎn)有( 。
A.0個(gè)B.1個(gè)
C.2個(gè)D.不確定,隨k的變化而變化

分析 先根據(jù)題中所給函數(shù)定義求出函數(shù)函數(shù)fK(x)的解析式,從而得到一個(gè)分段函數(shù),然后再利用指數(shù)函數(shù)的性質(zhì)求出所求即可.

解答 解:函數(shù)fk(x)=$\left\{\begin{array}{l}{(\frac{3}{2})^{x},0<x<lo{{g}_{\frac{3}{2}}}^{3}}\\{(\frac{3}{2})^{-x},-lo{{g}_{\frac{3}{2}}}^{3}<x≤0}\\{3,-lo{{g}_{\frac{3}{2}}}^{3}≤x≤lo{{g}_{\frac{3}{2}}}^{3}}\end{array}\right.$的圖象如圖所示:
則fk(x)=$\frac{k}{2}=\frac{3}{2}$的零點(diǎn)就是fk(x)與y=$\frac{3}{2}$的交點(diǎn),故交點(diǎn)有兩個(gè),即零點(diǎn)兩個(gè).
故選:C

點(diǎn)評(píng) 本題為新定義問題,正確理解新定義的含義是解決此類問題的關(guān)鍵.本題還考查含有絕對(duì)值的函數(shù)的性質(zhì)問題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖:Rt△ABC中,∠CAB=90°,AB=2,AC=$\frac{\sqrt{2}}{2}$,曲線E過C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的標(biāo)準(zhǔn)方程;
(2)過B點(diǎn)且傾斜角為120°的直線l交曲線E于M,N兩點(diǎn),求|MN|的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若復(fù)數(shù)z=(1+ai)(1-i)為純虛數(shù),i是虛數(shù)單位,則實(shí)數(shù)a的值是-1,|$\overline{z}+i$|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow a$=(sin(x+$\frac{π}{3}$),sin(x-$\frac{π}{6}$)),$\overrightarrow b$=(cos(x-$\frac{π}{6}$),cos(x+$\frac{π}{3}$)),$\overrightarrow a$•$\overrightarrow b$=$\frac{5}{13}$,且x∈[-$\frac{π}{3}$,$\frac{π}{6}$],則sin2x的值為(  )
A.$\frac{{5\sqrt{3}+12}}{26}$B.$\frac{{5\sqrt{3}-12}}{26}$C.$\frac{{5+12\sqrt{3}}}{26}$D.$\frac{{5-12\sqrt{3}}}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=(logmx)2+2logmx-3(m>0,且m≠1).
(Ⅰ)當(dāng)m=2時(shí),解不等式f(x)<0;
(Ⅱ)f(x)<0在[2,4]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\frac{2sin20°tan70°-2sin40°}{sin35°}$=$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)滿足:對(duì)?x∈R+都有f′(x)=$\frac{3}{x}$f(x),且f(22016)≠0,則$\frac{f({2}^{2017})}{f({2}^{2016})}$的值為( 。
A.0.125B.0.8C.1D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.$\frac{si{n}^{2}50°}{1+sin10°}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)$\overrightarrow a=(-3,m),\overrightarrow b=(4,3)$,若$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角,則實(shí)數(shù)m的范圍是( 。
A.m>4B.m<4C.m<4且$m≠\frac{9}{4}$D.m<4且$m≠-\frac{9}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案