【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量 (噸)與相應(yīng)的生產(chǎn)能耗 (噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù)
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)1求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
(附:,,,,其中,為樣本平均值)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)對于函數(shù),如果存在實數(shù)使得,那么稱為的生成函數(shù).
(1)下面給出兩組函數(shù),是否分別為的生成函數(shù)?并說明理由;
第一組:;
第二組:;
(2)設(shè),生成函數(shù).若不等式在上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,來自“一帶一路”沿線的20國青年評選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購.其中共享單車既響應(yīng)綠色出行號召,節(jié)能減排,保護環(huán)境,又方便人們短距離出行,增強靈活性.某城市試投放3個品牌的共享單車分別為紅車、黃車、藍車,三種車的計費標(biāo)準(zhǔn)均為每15分鐘(不足15分鐘按15分鐘計)1元,按每日累計時長結(jié)算費用,例如某人某日共使用了24分鐘,系統(tǒng)計時為30分鐘.A同學(xué)統(tǒng)計了他1個月(按30天計)每天使用共享單車的時長如莖葉圖所示,不考慮每月自然因素和社會因素的影響,用頻率近似代替概率.設(shè)A同學(xué)每天消費元.
(1)求的分布列及數(shù)學(xué)期望;
(2)各品牌為推廣用戶使用,推出APP注冊會員的優(yōu)惠活動:紅車月功能使用費8元,每天消費打5折;黃車月功能使用費20元,每天前15分鐘免費,之后消費打8折;藍車月功能使用費45元,每月使用22小時之內(nèi)免費,超出部分按每15分鐘1元計費.設(shè)分別為紅車,黃車,藍車的月消費,寫出與的函數(shù)關(guān)系式,參考(1)的結(jié)果,A同學(xué)下個月選擇其中一個注冊會員,他選哪個費用最低?
(3)該城市計劃3個品牌的共享單車共3000輛正式投入使用,為節(jié)約居民開支,隨機調(diào)查了100名用戶一周的平均使用時長如下表:
時長 | (0,15] | (15,30] | (30,45] | (45,60] |
人數(shù) | 16 | 45 | 34 | 5 |
在(2)的活動條件下,每個品牌各應(yīng)該投放多少輛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點社區(qū)抽取戶居民進行調(diào)查,得到如下的列聯(lián)表.
分類意識強 | 分類意識弱 | 合計 | |
試點后 | |||
試點前 | |||
合計 |
已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關(guān)?說明你的理由;
參考公式:,其中.
下面的臨界值表僅供參考
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中表示不超過的最大整數(shù),下列關(guān)于說法正確的有:______.
①的值域為[-1,1]
②為奇函數(shù)
③為周期函數(shù),且最小正周期T=4
④在[0,2)上為單調(diào)增函數(shù)
⑤與的圖像有且僅有兩個公共點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某集團公司計劃從甲分公司中的3位員工、、和乙分公司中的3位員工、、選擇2位員工去國外工作.
(1)若從這6名員工中任選2名,求這2名員工都是甲分公司的概率;
(2)若從甲分公司和乙分公司中各任選1名員工,求這2名員工包括但不包括的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,拋物線,點,設(shè)直線與交于不同的兩點、.
(1)若直線軸,求直線的斜率的取值范圍;
(2)若直線不垂直于軸,且,證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
①命題“2是素數(shù)且5是素數(shù)”是真命題
②命題“若x=y,則sinx=siny”的逆命題是真命題
③命題“x0∈R,x02﹣x0﹣2>0”的否定是“x∈R,x2﹣x﹣2≤0”
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過曲線的左焦點作曲線的切線,設(shè)切點為,延長交曲線于點,其中有一個共同的焦點,若,則曲線的離心率為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com