【題目】已知函數(shù)f(x)是R上的奇函數(shù).
(1)若x∈[,],求f(x)的取值范圍
(2)若對任意的x1∈[1,,總存在x2∈[,]使得mlog2(﹣6x12+24x1﹣16)﹣f(x2)0(m>0)成立,求實數(shù)m的取值范圍.
【答案】(1)[4,5](2).
【解析】
(1)利用奇函數(shù)的性質(zhì),結(jié)合f(0)=0,求得a=2,從而確定出函數(shù)的解析式,之后換元,令t=sinx,結(jié)合題中所給的自變量的范圍,求得,得到函數(shù),利用函數(shù)的單調(diào)性求得結(jié)果;
(2)根據(jù)題意,將問題轉(zhuǎn)化為兩個函數(shù)值域之間的關(guān)系,先求出兩個函數(shù)的值域,之后應用具備包含關(guān)系的兩個集合的特征,列出對應的不等式組,求得結(jié)果.
(1)由題意,f(0)=0,即a﹣2=0,解得a=2,
∴,令t=sinx,由x∈[,]得,,
∴,
易知函數(shù)g(t)在上單調(diào)遞增,故g(t)∈[4,5],
∴f(x)的取值范圍為[4,5];
(2)由已知,對任意的x1∈[1,,總存在x2∈[,]使得mlog2(﹣6x12+24x1﹣16)f(x2)(m>0)成立,
設函數(shù),的值域為集合A,函數(shù)的值域為集合B,
由已知,AB,由(1)得B=[4,5],
當x1∈[1,時,,,
故,
則,
解得,
又m>0,故實數(shù)m的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A,B,C為函數(shù)的圖象上的三點,它們的橫坐標分別是t、t+2、t+4,其中t≥1,
.
(1)設△ABC的面積為S,求S=f(t);
(2)判斷函數(shù)S=f(t)的單調(diào)性;
(3)求S=f(t)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)時間經(jīng)過(時),時針、分針各轉(zhuǎn)了多少度?各等于多少弧度?
(2)有人說,鐘的時針和分針一天內(nèi)會重合24次。你認為這種說法是否正確?請說明理由.
(提示:從午夜零時算起,假設分針走了t min會與時針重合,一天內(nèi)分針和時針會重合n次,建立t關(guān)于n的函數(shù)解析式,并畫出其圖象,然后求出每次重合的時間)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,建立極坐標系.已知曲線: (為參數(shù)), :(為參數(shù)).
(1)化,的方程為普通方程,并說明它們分別表示什么曲線;
(2)直線的極坐標方程為,若上的點對應的參數(shù)為,為上的動點,求線段的中點到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣3|+x+1.
(1)求函數(shù)f(x)的最小值;
(2)當x≥1時,關(guān)于x的不等式f(2x)<4x+2a恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結(jié)論中正確的個數(shù)是( )
①正三棱錐的頂點在底面的射影到底面各頂點的距離相等;
②有兩個側(cè)面是矩形的棱柱是直棱柱;
③兩個底畫平行且相似的多面體是棱臺;
④底面是正三角形,其余各面都是等腰三角形的三棱錐一定是正三棱錐.
A.0B.1C.5D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學為了計算函數(shù)圖象與x軸,直線,所圍成形狀A的面積,采用“隨機模擬方法”,用計算機分別產(chǎn)生10個在上的均勻隨機數(shù)和10個在上的均勻隨機數(shù),其數(shù)據(jù)記錄為如下表的前兩行.
2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 | |
0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 | |
0.92 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
(1)依據(jù)表格中的數(shù)據(jù)回答,在圖形A內(nèi)的點有多少個,分別是什么?
(2)估算圖形A的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,為參數(shù),且.
(Ⅰ)當時,判斷函數(shù)是否有極值.
(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍.
(Ⅲ)若對(Ⅱ)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個結(jié)論:
①當a為任意實數(shù)時,直線(a﹣1)x﹣y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標準方程是;
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x﹣y=0,則雙曲線的標準方程是;
③拋物線的準線方程為.
④已知雙曲線,其離心率e∈(1,2),則m的取值范圍是(﹣12,0).
其中正確命題的序號是___________.(把你認為正確命題的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com