【題目】已知a<2,函數(shù)f(x)=(x2+ax+a)ex.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的極大值是6e-2,求a的值.
【答案】(1)的單調(diào)增區(qū)間是(2)
【解析】
(1)定義域?yàn)?/span>R,或所以的單調(diào)增區(qū)間為(2)或故-2,-a有可能是的極值點(diǎn),列表判斷出時(shí)取得極大值且極大值是列方程求出a.函數(shù)的單調(diào)性與導(dǎo)數(shù),函數(shù)的極值
試題解析:(1)當(dāng)a=1時(shí),f(x)=(x2+x+1)ex,∴f′(x)=(x2+3x+2)ex.
由f′(x)≥0,得x2+3x+2≥0,解得x≤-2或x≥-1.
∴f(x)的單調(diào)遞增區(qū)間是(-∞,-2],[-1,+∞).
(2)f′(x)=[x2+(a+2)x+2a]ex.由f′(x)=0,得x=-2或x=-a.
∵a<2,∴-a>-2.
當(dāng)x變化時(shí),f′(x),f(x)變化情況列表如下:
∴x=-2時(shí),f(x)取得極大值.而f(-2)=(4-a)·e-2,
∴(4-a)e-2=6×e-2.∴a=-2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證: ;
(Ⅱ)試確定點(diǎn)的位置,使得直線與平面所成的角和直線與平面所成的角相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測重,其質(zhì)量分別在,,,,,單位:克中,其頻率分布直方圖如圖所示.
Ⅰ按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取5個(gè),再從這5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;
Ⅱ以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元千克收購;
B.低于2250克的蜜柚以60元個(gè)收購,高于或等于2250克的以80元個(gè)收購.
請你通過計(jì)算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部數(shù)學(xué)平均分分別是a、b,則這兩個(gè)級部的數(shù)學(xué)平均分為
③某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從001到800進(jìn)行編號,已知從497--512這16個(gè)數(shù)中取得的學(xué)生編號是503,則初始在第1小組00l~016中隨機(jī)抽到的學(xué)生編號是007.
其中命題正確的個(gè)數(shù)是( )
A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
求函數(shù)的單調(diào)區(qū)間和極值.
若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a<2,函數(shù)f(x)=(x2+ax+a)ex.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的極大值是6e-2,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
求的單調(diào)區(qū)間;
當(dāng)時(shí),若對任意的,都有,求實(shí)數(shù)的取值范圍;
證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于、兩點(diǎn),若存在點(diǎn)使得為等邊三角形,則( )
A. 8 B. 10 C. 12 D. 14
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com