【題目】如圖所示,和所在平面互相垂直,且,,,分別為,的中點.
(1)求證:;
(2)求二面角的正弦值.
【答案】(1)見解析(2)
【解析】
試題分析:(1)(方法一)過E作EO⊥BC,垂足為O,連OF,由△ABC≌△DBC可證出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,即可證明EF⊥BC.(方法二)由題意,以B為坐標原點,在平面DBC內(nèi)過B左垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內(nèi)過B作垂直BC的直線為z軸,建立如圖所示的空間直角坐標系.
易得,所以,因此,從而得;(2) (方法一)在圖1中,過O作OG⊥BF,垂足為G,連EG,由平面ABC⊥平面BDC,從而EO⊥平面BDC,從而EO⊥面BDC,又OG⊥BF,由三垂線定理知EG垂直BF,因此∠EGO為二面角E-BF-C的平面角;在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,從而sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(方法二)在圖2中,平面BFC的一個法向量為,設(shè)平面BEF的法向量,又,由得其中一個,設(shè)二面角E-BF-C的大小為,且由題意知為銳角,則,因此sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(1)證明:
(方法一)過E作EO⊥BC,垂足為O,連OF,
由△ABC≌△DBC可證出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,
又EO⊥BC,因此BC⊥面EFO,
又EF面EFO,所以EF⊥BC.
(方法二)由題意,以B為坐標原點,在平面DBC內(nèi)過B左垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內(nèi)過B作垂直BC的直線為z軸,建立如圖所示的空間直角坐標系.
易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而,所以,因此,從而,所以.
(2)(方法一)在圖1中,過O作OG⊥BF,垂足為G,連EG,由平面ABC⊥平面BDC,從而EO⊥平面BDC,從而EO⊥面BDC,又OG⊥BF,由三垂線定理知EG垂直BF.
因此∠EGO為二面角E-BF-C的平面角;
在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,從而sin∠EGO=,即二面角E-BF-C的正弦值為.
(方法二)在圖2中,平面BFC的一個法向量為,設(shè)平面BEF的法向量,又,由得其中一個,設(shè)二面角E-BF-C的大小為,且由題意知為銳角,則,因此sin∠EGO=,即二面角E-BF-C的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人玩摸卡片游戲,現(xiàn)有標號為1到12的卡片共12張,每人摸4張.
甲說:我摸到卡片的標號是10和12;
乙說:我摸到卡片的標號是6和11;
丙說:我們?nèi)烁髯悦娇ㄆ臉颂栔拖嗟龋?/span>
據(jù)此可判斷丙摸到的編號中必有的兩個是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組共有10人,利用假期參加義工活動,已知參加義工活動1次的有2人、2次的有4人、3次的有4人.現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.
(I)設(shè)為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件發(fā)生的概率;
(II)設(shè)為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水葫蘆原產(chǎn)于巴西,年作為觀賞植物引入中國. 現(xiàn)在南方一些水域水葫蘆已泛濫成災(zāi)嚴重影響航道安全和水生動物生長. 某科研團隊在某水域放入一定量水葫蘆進行研究,發(fā)現(xiàn)其蔓延速度越來越快,經(jīng)過個月其覆蓋面積為,經(jīng)過個月其覆蓋面積為. 現(xiàn)水葫蘆覆蓋面積(單位)與經(jīng)過時間個月的關(guān)系有兩個函數(shù)模型與可供選擇.
(參考數(shù)據(jù): )
(Ⅰ)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求原先投放的水葫蘆的面積并求約經(jīng)過幾個月該水域中水葫蘆面積是當初投放的倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,兩點,與軸的另一個交點為,頂點為,連結(jié).
(1)求該拋物線的表達式;
(2)點為該拋物線上的一動點(與點、不重合),設(shè)點的橫坐標為.當點在直線的下方運動時,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對名六年級學(xué)生進行了問卷調(diào)查,得到如下列聯(lián)表(平均每天喝以上為常喝,體重超過為肥胖):
常喝 | 不常喝 | 合計 | |
肥胖 | |||
不胖 | |||
合計 |
(1)已知在全部人中隨機抽取人,求抽到肥胖的學(xué)生的概率?
(2)是否有的把握認為肥胖與常喝碳酸飲料有關(guān)?說明你的理由;
(3)現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中(其中名女生),抽取人參加電視節(jié)目,則正好抽到一男一女的概率是多少?
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個結(jié)論,其中正確的結(jié)論是( )
A.函數(shù)的最大值為
B.已知函數(shù)(且)在上是減函數(shù)則a的取值范圍是
C.在同一直角坐標系中,函數(shù)與的圖象關(guān)于y軸對稱
D.在同一直角坐標系中,函數(shù)與的圖象關(guān)于直線對稱
E.已知定義在R上的奇函數(shù)在內(nèi)有1010個零點,則函數(shù)的零點個數(shù)為2021
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工科院校對A、B兩個專業(yè)的男、女生人數(shù)進行調(diào)查統(tǒng)計,得到以下表格:
專業(yè)A | 專業(yè)B | 合計 | |
女生 | 12 | ||
男生 | 46 | 84 | |
合計 | 50 | 100 |
如果認為工科院校中“性別”與“專業(yè)”有關(guān),那么犯錯誤的概率不會超過( )
注:
P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 0.005B. 0.01C. 0.025D. 0.05
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左、右焦點分別為. 若點P在雙曲線上,且為銳角三角形,則|PF1|+|PF2|的取值范圍是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com