【題目】水葫蘆原產(chǎn)于巴西,年作為觀賞植物引入中國. 現(xiàn)在南方一些水域水葫蘆已泛濫成災(zāi)嚴(yán)重影響航道安全和水生動物生長. 某科研團(tuán)隊(duì)在某水域放入一定量水葫蘆進(jìn)行研究,發(fā)現(xiàn)其蔓延速度越來越快,經(jīng)過個月其覆蓋面積為,經(jīng)過個月其覆蓋面積為. 現(xiàn)水葫蘆覆蓋面積(單位)與經(jīng)過時間個月的關(guān)系有兩個函數(shù)模型與可供選擇.
(參考數(shù)據(jù): )
(Ⅰ)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求原先投放的水葫蘆的面積并求約經(jīng)過幾個月該水域中水葫蘆面積是當(dāng)初投放的倍.
【答案】(1)(2)原先投放的水葫蘆的面積為8m2, 約經(jīng)過17個月該水域中水葫蘆面積是當(dāng)初投放的倍.
【解析】
(Ⅰ)判斷兩個函數(shù)y=kax(k>0,a>1),在(0,+∞)的單調(diào)性,說明函數(shù)模型y=kax(k>0,a>1)適合要求.然后列出方程組,求解即可.
(Ⅱ)利用 x=0時,,若經(jīng)過個月該水域中水葫蘆面積是當(dāng)初投放的倍則有
,求解即可.
(Ⅰ)的增長速度越來越快,的增長速度越來越慢.
則有, 解得 ,
(Ⅱ)當(dāng)時,
該經(jīng)過個月該水域中水葫蘆面積是當(dāng)初投放的倍. 有
答:原先投放的水葫蘆的面積為8m2, 約經(jīng)過17個月該水域中水葫蘆面積是當(dāng)初投放的倍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點(diǎn)為,左、右頂點(diǎn)分別為,經(jīng)過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)記與的面積分別為和,求關(guān)于的表達(dá)式,并求出當(dāng)為何值時有最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人做定點(diǎn)投籃游戲,已知甲每次投籃命中的概率均為,甲投籃3次均未命中的概率為,乙每次投籃命中的概率均為,乙投籃2次恰好命中1次的概率為,甲、乙每次投籃是否命中相互之間沒有影響.
(1)若乙投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABCD是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE,點(diǎn)M是棱AD的中點(diǎn)
(1)求異面直線ME與AB所成角的大小;
(Ⅱ)證明:平面AED⊥平面ACD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù),0≤φ≤π),曲線C2的參數(shù)方程為 (t為參數(shù)).
(1)求C1的普通方程并指出它的軌跡;
(2)以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線OM:θ= 與半圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的焦點(diǎn)是橢圓: 的頂點(diǎn), 為橢圓的左焦點(diǎn)且橢圓經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)過橢圓的右頂點(diǎn)作斜率為()的直線交橢圓于另一點(diǎn),連結(jié)并延長交橢圓于點(diǎn),當(dāng)的面積取得最大值時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線a、b和平面,下列說法中正確的有______ .
若,則;
若,則;
若,則;
若直線,直線,則;
若直線a在平面外,則;
直線a平行于平面內(nèi)的無數(shù)條直線,則;
若直線,那么直線a就平行于平面內(nèi)的無數(shù)條直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合,若曲線C的極坐標(biāo)方程為ρ=6cosθ+2sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)點(diǎn)Q(1,2),直線l與曲線C交于A,B兩點(diǎn),求|QA||QB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知表示兩個不同的平面, 表示兩條不同直線,對于下列兩個命題:
①若,則“”是“”的充分不必要條件;
②若,則“”是“且”的充要條件.判讀正確的是( )
A. ①②都是真命題 B. ①是真命題,②是假命題
C. ①是假命題,②是真命題 D. ①②都是假命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com