【題目】在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?
【答案】解:設箱底邊長為xcm,則箱高 cm,得箱子容積 (0<x<60).
(0<x<60)
令 =0,
解得 x=0(舍去),x=40,
并求得V(40)=16 000
由題意可知,當x過小(接近0)或過大(接近60)時,箱子容積很小,因此,16 000是最大值
答:當x=40cm時,箱子容積最大,最大容積是16 000cm3
【解析】先設箱底邊長為xcm,則箱高 cm,得箱子容積,再利用導數(shù)的方法解決,應注意函數(shù)的定義域.
【考點精析】解答此題的關鍵在于理解基本不等式在最值問題中的應用的相關知識,掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.
科目:高中數(shù)學 來源: 題型:
【題目】已知在( ﹣ )n的展開式中,第6項為常數(shù)項.
(1)求n;
(2)求含x2項的系數(shù);
(3)求展開式中所有的有理項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機變量,則P(X=k)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)需要設計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱(如圖所示),并要求正四棱柱的高是正四棱錐的高的4倍.
(1)若則倉庫的容積是多少?
(2)若正四棱錐的側(cè)棱長為,則當為多少時,倉庫的容積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點與橢圓: 的一個焦點重合,點在拋物線上,過焦點的直線交拋物線于、兩點.
(Ⅰ)求拋物線的方程以及的值;
(Ⅱ)記拋物線的準線與軸交于點,試問是否存在常數(shù),使得且都成立?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a2=3,S5=25.
(1)求數(shù)列{an}的通項公式an;
(2)設數(shù)列{ }的前n項和為Tn , 是否存在k∈N* , 使得等式2﹣2Tk= 成立,若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 為圓的直徑,點在圓上,且,矩形所在的平面和圓所在的平面垂直,且.
(1)求證:平面平面;
(2)在線段上是否存在了點,使得平面?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)y=f(x)的圖象過點(8,m)和(9,3).
(Ⅰ)求m的值;
(Ⅱ)若函數(shù)g(x)=logaf(x)(a>0,a≠1)在區(qū)間[16,36]上的最大值比最小值大1,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com