若cos2α=-
4
5
,α是第二象限的角,則
1+tanα
1-tanα
=( 。
A、-
1
2
B、
1
2
C、2
D、-2
考點:同角三角函數(shù)基本關(guān)系的運用
專題:計算題,三角函數(shù)的求值
分析:利用二倍角公式,求出cosα,利用同角三角函數(shù)關(guān)系求出tanα,即可求出結(jié)論.
解答: 解:∵cos2α=2cos2α-1=-
4
5
,α是第二象限的角,
∴cosα=-
10
10

∴sinα=
3
10
10
,
∴tanα=-3,
1+tanα
1-tanα
=
1-3
1+3
=-
1
2

故選:A.
點評:本小題主要考查二倍角公式、同角三角函數(shù)關(guān)系,同時考查了基本運算能力及等價變換的解題技能.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|y=2x-1},B={(x,y)|y=3x+1},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱柱體積為V,則其表面積最小時,底面邊長為(  )
A、
3V
B、
34V
C、
32V
D、2
3V

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的值域為[-1,3],則函數(shù)y=f(x+1)的值域為(  )
A、[1,4]
B、[-2,2]
C、[0,3]
D、[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,已知A(1,0,0),B(-1,0,0),C(0,1,
2
),D(0,-1,
2
)
,則四面體ABCD的體積為(  )
A、
2
2
3
B、
2
3
C、
4
3
D、
4
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”.已知直線l1:ax+3y+6=0,l2:2x+(a+1)y+6=0,和圓C:x2+y2+2x=b2-1(b>0)的位置關(guān)系是“平行相交”,則b的取值范圍為( 。
A、(
2
,
3
2
2
B、(0,
2
C、(0,
3
2
2
D、(
2
3
2
2
)∪(
3
2
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-1)2=4與y軸相交于A、B兩點,則
CA
CB
=( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合,A={(x,y)|(x-t)2+(y-at+2)2=1}和集合B={(x,y)|(x-4)2+y2=1},如果命題“?t∈R,A∩B≠∅”是真命題,則實數(shù)a的取值范圍是( 。
A、0<a≤
4
3
B、0≤a≤
5
3
C、0≤a≤
4
3
D、0≤a<
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓ρ=2sinθ的圓心的極坐標(biāo)是(  )
A、(1,
π
2
B、(1,-
π
2
C、(1,0)
D、(1,π)

查看答案和解析>>

同步練習(xí)冊答案